

Tom Steele, University of Saskatchewan CAP Congress, June 2015

- Wei Chen, Jason Ho, Robin Kleiv (University of Saskatchewan)
- Hong-ying Jin, Meng Wang, and Qing Xu (Zhejiang University)
- Derek Harnett, B. Bulthuis, T. Richards (U of Fraser Valley)
- Ian Blokland (U of Alberta)
- Ailin Zhang (Shanghai University)
- Shi-Lin Zhu (Peking University)
- Hua-Xing Chen, Er-Liang Cui (Beihang University)

References

- R.T. Kleiv, TGS, Ailin Zhang, Ian Blokland
 Phys. Rev. D87 (2013) 125018 [arXiv:1304.7816]
- Wei Chen, Hong-ying Jin, R.T. Kleiv, TGS, Meng Wang, Qing Xu Phys. Rev. D88 (2013) 045027 [arXiv:1305.0244]
- Wei Chen, R.T. Kleiv, TGS, B. Bulthuis, D. Harnett, J. Ho, T. Richards, Shi-Lin Zhu JHEP 09 (2013) 019 [arXiv: 1304.4552]
- Wei Chen, TGS, Meng-Lin Du, Shi-Lin Zhu
 Eur. Phys. J C74 (2014) 2773 [arXiv:1308.5060]
- Wei Chen, TGS, Shi-Lin Zhu Journal of APCosPA 2 (2014) 13 [arXiv: 1403.7457]
- Wei Chen, TGS, Hua-Xing Chen, Shi-Lin Zhu arXiv:1501.03863
- Wei Chen, TGS, Hua-Xing Chen, Shi-Lin Zhu arXiv:1505.05619

Outline

- Overview of XYZ states and possible interpretations
- Overview of QCD sum-rule methods
- Selected QCD sum-rule results:
 - $Z_c^+, J^{PC} = 1^{+-}$ molecular states
 - Closed-charm tetraquark states
 - Charmonium hybrids
 - Mixed Molecular-Hybrid scenario for X(3872)
 - Diquarks and Tetraquark Scenario
- Summary

Limit discussion to charm (closed flavour) sector

What are the XYZ Mesons?

- Charmonium-like and bottomonium-like states that defy standard interpretations
- Decay into final states containing $\bar{c}c$ or $\bar{b}b$ pair
- Many such states (more than 25) discovered/confirmed since 2003 by BaBar, Belle, BES, CDF, CMS, CLEO, LHCb
- Denoted as X,Y, Z states in literature; PDG 2014 only uses X
- No sign that discovery is slowing
- Production of heavy pair from vacuum suppressed; assumed in initial state
- Charged states $Z_c^+(3900)$, $Z_1^+(4050)$, $Z_2(4250)$, $Z_c^+(4050)$, $Z_c^+(4200)$, $Z^+(4430)$ evidence for four-quark states $\bar{c}cud$

recent Belle results: arXiv: 1410.7641, PRD90 (2014)

diquark-diantiquark

Interpretations of XYZs

- Charmonium (needs to be ruled out first)
- Hybrids: mesons with gluonic excitation (colourless quark-antiquark-glue state), can have conventional or exotic J^{PC}
- Four-Quark scenarios

Also used to interpret light-quark scalar sector

Ū

 $D^0 - \overline{D^{*0}}$ "molecule"

- Molecules: meson-meson bound state
- Tetraquarks: diquark-antidiquark state (diquark colour triplet just like quarks)
- Hadrocharmonium: tightly bound $\bar{c}c$ pair in light meson cloud
- Mixed scenarios: when pure interpretations fail

Four-Quark scenarios have different internal quark configurations

QCD Sum-Rules

- Basic concept similar to lattice QCD: study correlation functions of (local) currents J(x) with quantum numbers of state
- $\Pi\left(Q^{2}\right) = i \int d^{4}x \, e^{iq \cdot x} \left\langle 0 | T\left[J(x)J(0)\right] | 0 \right\rangle$
- Classify states |M> by coupling to current $\langle 0|J|M
 angle
 eq 0$
- Currents are probes of spectrum and might not overlap with desired state
- Apply Borel transform to correlation function's dispersion relation
- Laplace sum-rules relate QCD prediction to hadronic spectral function

$$\mathcal{R}_k(\tau, s_0) = \frac{1}{\pi} \int_{t_0}^{s_0} t^k \exp(-t\tau) \rho^{\text{had}}(t) dt$$

- Both lattice and QCD sum-rules predict mass from exponential decays (in distance for lattice, in Borel-transformed momentum space for sum-rules)
- Sum-rules contain power-law contributions from QCD condensates (nonperturbative inputs)

Local operator obscures

internal structure

$Z_c^+, J^{PC} = 1^{+-}$ Molecular States

W Chen, TGS, H-X Chen, S-L Zhu arXiv: 1505.05619

- Experimental evidence of a landscape of charged states (spin of Z₁ and Z₂ ?) $Z_c^+(3900), Z_1^+(4050), Z_2(4250), Z_c^+(4050), Z_c^+(4200), Z^+(4430)$
- Can form eight independent $J^{PC} = 1^{+-}$ "molecular" currents (4 singlet-singlet and 4 octet-octet) for QCD sum-rule analysis e.g.,

 $J_{1\mu}^{(1)} = (\bar{q}_a \gamma_5 Q_a)(\bar{Q}_b \gamma_\mu q_b) + (\bar{q}_a \gamma_\mu Q_a)(\bar{Q}_b \gamma_5 q_b) -$

 $J_{1\mu}^{(\mathbf{8})} = (\bar{q}_a \gamma_5 \lambda_{ab}^n Q_b) (\bar{Q}_c \gamma_\mu \lambda_{cd}^n q_d) + (\bar{q}_a \gamma_\mu \lambda_{ab}^n Q_b) (\bar{Q}_c \gamma_5 \lambda_{cd}^n q_d)$

 Can Fierz transform the eight molecular currents into tetraquark currents (4 triplet-triplet and 4 sextet-sextet)

Local operators obscure information on internal structure Zhang, Huang, TGS PRD76 (2007)

 Calculate QCD sum-rule for correlation function at leading loop-order, dominant non-perturbative effects from quark and mixed condensate

$Z_c^+, \ J^{PC} = 1^{+-}$ QCD Sum-Rule Analysis

• QCD input parameters

 $m_c(m_c) = (1.23 \pm 0.09) \text{GeV}, \ m_b(m_b) = (4.20 \pm 0.07) \text{GeV},$

$$\langle \bar{q}g_s \sigma \cdot Gq \rangle = -M_0^2 \langle \bar{q}q \rangle, \ M_0^2 = (0.8 \pm 0.2) \text{GeV}^2$$

 $\langle \bar{q}q \rangle = -(0.23 \pm 0.03)^3 \text{GeV}^3, \ \langle g_s^2 GG \rangle = (0.88 \pm 0.14) \text{GeV}^4$

 $\bullet\,$ Single narrow resonance plus QCD continuum model, predict mass M_X via

$$M_X^2 = \frac{\mathcal{R}_1(\tau, s_0)}{\mathcal{R}_0(\tau, s_0)} \qquad \qquad \text{critical point of ratio}$$

- Narrow width approximation very good since $\tau \ \Gamma \ M_X$ is small
- Sum-rule window: pole term >20%, highest dimension condensates <5%

Steele, CAP 2015

Charmonium Hybrids

W Chen, Kleiv, TGS, Bulthuis, Harnett, Richards, Ho, S-L Zhu, JHEP09 (2013)

- Mesons with gluonic excitation (quark-antiquark-glue) form colourless states
- Can have conventional J^{PC} and mix with quark-antiquark mesons
- Can have non-standard J^{PC} like I⁻⁺ with clear exotic signature
- Unique decay signatures (e.g. S-wave meson pairs suppressed)
 Isgur et al, PRL54 (1985)
- Y(4260) has been interpreted as hybrid candidate S-L Zhu, PLB625 (2005)
- Bag model and lattice QCD: supermultiplet structure, odd parity states lighter

Charmonium Hybrid QCD Sum-Rule Analysis

Construct hybrid interpolating currents for exotic and conventional J^{PC}

- Leading order correlator (QCD sum-rule) up to dim-six gluonic condensates
- Same methodology as molecular states: stability analysis of sum-rule ratio in sum-rule window of validity

Charmonium Hybrid Mass Spectrum

- Supermultiplet structure based on parity
- 0⁻⁻anomalous: heaviest state
- For conventional J^{PC} mixing with charmonium would raise mass prediction (lower bound)
- No obvious alignment with observed XYZs

$\int J^{PC}$	$s_0({ m GeV}^2)$	$m_X(\text{GeV})$
1	15	3.36 ± 0.15
0-+	16	3.61 ± 0.21
1-+	17	3.70 ± 0.21
2^{-+}	18	4.04 ± 0.23
0+-	20	4.09 ± 0.23
2^{++}	23	4.45 ± 0.27
1+-	24	4.53 ± 0.23
1^{++}	30	5.06 ± 0.44
0^{++}	34	5.34 ± 0.45
0	35	5.51 ± 0.50

W Chen, Kleiv, TGS, Bulthuis, Harnett, Richards, Ho, S-L Zhu, JHEP09 (2013)

If hybrids present in XYZs might be within mixed states

Steele, CAP 2015

The Enigmatic X(3872)

- Discovery by Belle, confirmed by CDF, D0, BaBar Belle PRL91 (2003)
- PDG mass 3871.69 \pm 0.17 MeV and width Γ < 1.2 MeV
- LHCb settles quantum numbers: J^{PC}= 1⁺⁺ LHCb PRLIIO (2013)
- Large isospin violation: $X \rightarrow \rho J/\psi$ and $X \rightarrow \omega J/\psi$ comparable (Belle/BaBar)
- Isospin not well understood: likely an isosinglet
- Molecular interpretation explains isospin violation but hard to describe radiative decays $X \rightarrow \gamma J/\psi$ Swanson PLB588 (2004)

Steele, CAP 2015

Mixed Hybrid/Molecular Currents

- Mixed I⁺⁺ hybrid/molecular currents for QCD sum-rule analysis $J^{h}_{\mu} = \frac{1}{2} g \bar{c} \gamma^{\nu} \lambda^{a} \tilde{G}^{a}_{\mu\nu} c , \quad \tilde{G}^{a}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^{\alpha\beta}_{a} , \quad J^{m}_{\nu} = \frac{1}{\sqrt{2}} \left(\bar{q}_{a} \gamma_{5} c_{a} \bar{c}_{b} \gamma_{\nu} q_{b} - \bar{q}_{a} \gamma_{\nu} c_{a} \bar{c}_{b} \gamma_{5} q_{b} \right)$ $J^{\xi}_{\nu} = \sqrt{1 - \xi^{2}} J^{m}_{\nu} + \xi \sigma J^{h}_{\nu}$
 - Parameter $0 < \xi < 1$ interpolates between molecular and hybrid limits; σ is mass scale (set $\sigma = 1$ GeV with no loss of generality)

Harnett, Kleiv, TGS, H-Y Jin, JPG39 (2012) Lee et al arXiv:0803.1168

 Mixed current correlation function contains known hybrid-hybrid and molecular-molecular results; off-diagonal (hm) correlator must be calculated

$$\Pi_{\mu\nu}^{\xi}(q) = i \int d^4x \, e^{iq \cdot x} \langle 0|T \left[J_{\mu}^{\xi}(x) J_{\nu}^{\xi}(0) \right] |0\rangle$$

$$\Pi_{\mu\nu}^{\text{hm}}(q) = i \int d^4x \, e^{iq \cdot x} \langle 0|T \left[J_{\mu}^{\text{h}}(x) J_{\nu}^{\text{m}}(0) \right] |0\rangle$$
Transverse part

Molecule/Hybrid QCD Sum-Rule Analysis

- Mixed correlator subtle: need to renormalize hybrid (composite) operator $\begin{bmatrix} J_{\mu}^{h} \end{bmatrix}_{R} = Z_{1} \begin{bmatrix} J_{\mu}^{h} \end{bmatrix}_{B} + Z_{2}m^{2} \begin{bmatrix} \mathcal{O}_{\mu} \end{bmatrix}_{B} + \dots, \quad Z_{1} = 1 + \frac{\alpha}{\pi} \frac{Z_{h1}}{\epsilon}, \quad Z_{2} = -\frac{10}{243} \frac{\alpha}{\pi} \frac{1}{\epsilon}$ $\mathcal{O}_{\mu} = \bar{c}\Gamma_{\mu}c, \quad \Gamma_{\mu} = \epsilon_{\mu\nu\alpha\beta} \left(\gamma^{\nu}\sigma^{\alpha\beta} + \gamma^{\alpha}\sigma^{\beta\nu} - \gamma^{\beta}\sigma^{\alpha\nu}\right)$
- Leading order, condensates up to dimension five

W Chen, H-Y Jin, Kleiv, TGS, M Wang, Q Xu, PRD88 (2013)

X(3872): Mixed Hybrid/Molecule

- W Chen, H-Y Jin, Kleiv, TGS, M Wang, Q Xu, PRD88 (2013)
- Scan QCD sum rule for M_X over mixing parameter ξ (must optimize s_0)
- M_X increases as ξ increases from zero (pure molecule) until max at $\xi \approx 0.002$
- Viable scenario of X(3872) coupling to mixtures of hybrid/molecular currents
- Significant mixing (compare $\xi \approx 0.002$ to ratios of pure correlation functions)

Internal Structure of Multiquark XYZs

- Molecular and diquark scenarios of XYZs cluster quarks differently
- Diquarks are in colour triplet; experience colour force like quarks
- Two mixed neutral states $[cq]_{\bar{3}}[\bar{c}\bar{q}]_{3}$ (q=u,d)
- Phenomenological input of constituent diquark mass $M_{[cq]} = 1933\,{
 m MeV}$

I/ψ

• Decay by "single switch" process $[cq]_{\bar{3}}[\bar{c}\bar{q}]_3 \rightarrow [\bar{c}c]_0[\bar{q}q]_0$

tuned to X(3872) !!

Maiani et al PRD71 (2005)

Can QCD say anything about internal structure? Diquark mass prediction provides indirect probe Heavy-Light Diquarks

- Gauge dependent diquark currents for QCD sum-rule analysis $J_{\alpha} = \epsilon_{\alpha\beta\gamma} Q_{\beta}^{T} C \mathcal{O} q_{\gamma}; \ \mathcal{O} = \gamma_{5}, I, \gamma_{\mu}, \gamma_{\mu}\gamma_{5} \ (J^{P} = 0^{+}, \ 0^{-}, \ 1^{+}, \ 1^{-})$
- Schwinger string extracts gauge invariant information from correlator

Dosch, Jamin, Stech, ZPC42 (1989)

$$\Pi \left(Q^2\right) = i \int d^4 x \, e^{iq \cdot x} \langle 0|T \left[J_\alpha \left(x\right) S_{\alpha\omega} \left[x, 0\right] J_\omega^{\dagger} \left(0\right) \right] |0\rangle$$
$$S_{\alpha\omega} \left[x, 0\right] = P \exp \left[ig \frac{\lambda^a_{\alpha\omega}}{2} \int_0^x dz^\mu A^a_\mu \left(z\right) \right]$$

• Calculate correlator: next-to-leading perturbation theory

Heavy-Light Diquark Correlator

Kleiv, TGS, Zhang, Blokland, PRD87 (2013)

Calculate correlator: leading-order in QCD condensates to dimension five

 Standard sum-rule analysis: only stable results for positive parity diquarks Jaffe: no negative parity "worse" diquarks

• [cq] positive parity diquark QCD sum-rule mass predictions nearly degenerate

 $M_s = 1.86 \pm 0.05 \,\text{GeV}, \ M_a = 1.87 \pm 0.1 \,\text{GeV}$

• Excellent agreement with tetrauqark model tuned to X(3872)

 $M_{[cq]} = 1933 \,\mathrm{MeV}$ Maiani et al PRD71 (2005)

Indirect QCD evidence supporting tetraquark model for XYZs

Additional results

Discussion

- Rich landscape of XYZ mesons observed that cannot be explained as charmonium states
- Many charged states now observed: multi-quark scenarios seem inevitable and provide unifying theme with light scalars
- Neutral partners for some charged states, completing isospin multiplets
- Open question: internal quark structure of multi-quark states (e.g. tetraquark versus molecular); difficult to answer with analyses based on local operators
- No evidence of pure charmonium hybrids amongst known XYZs; QCD evidence of viable mixed hybrid/multiquark states to resolve stubborn puzzles
- QCD can provide indirect evidence for multi-quark models (e.g., agreement between diquark mass predictions in QCD and tetraquark models)

Key challenge for QCD

compelling unifying theoretical framework for the XYZs

People. Discovery. Innovation.

Steele, CAP 2015

Additional QCD Sum-Rule Results

- Bottomonium hybrids W Chen, Kleiv, TGS, Bulthuis, Harnett, Richards, Ho, S-L Zhu, JHEP09 (2013)
- Bottom/Charm hybrids W Chen, TGS, S-L Zhu, JPG 41 (2014)
- Open-flavour (bottom/charm) tetraquarks W Chen, TGS, S-L Zhu, PRD 89 (2014)
- Z_c(4200) decay widths $Z_c^+(4200) \to J/\psi \pi^+, \ \eta_c \rho^+, \ D^+ \bar{D}^{*0}$

W Chen, TGS, H-X Chen, S-L Zhu, arXiv:1501.03863

Summary