Compton Scattering and Polarizabilities at MAMI What do they tell us about hadron structure?

David Hornidge, Mount Allison University

CINP Town Hall Meeting Edmonton, AB

13 June 2015

"Can the theory of quark and gluon confinement quantitatively describe the detailed properties of hadrons?" Perspectives on Subatomic Physics in Canada 2006–2016.

- Theory: QCD describes the strong force in terms of quarks and gluons.
- Nobel Prize in 2004 for **Asymptotic Freedom** in the pQCD regime...
- However, in the non-perturbative region, QCD is still unsolved.

One of the top ten challenges for all of physics!

How do we test QCD in the non-perturbative regime?

High-precision measurements with polarization observables.

Hadron Polarizabilities

- Fundamental structure constants.
- Response of internal structure to external fields.
- Fertile meeting ground between theory and experiment.
- Best measured via Compton scattering, both real and virtual.

Theoretical Approaches

- Dispersion Relations (both subtracted and unsubtracted).
- Chiral Perturbation Theory.
- Lattice QCD.

Electric Dipole Polarizability of a Composite System

- Apply an electric field to a composite system
- Separation of Charge, or "Stretchability"
- Proportionality constant between electric dipole moment and electric field is the electric dipole polarizability, α_{E1}.

Use the well-understood EM interaction (QED) to gain information on force holding system together, the strong nuclear force (QCD).

Scalar Polarizabilities - Conceptual

Magnetic Dipole Polarizability of a Composite System

- Apply a magnetic field to a composite system
- Alignment of dipoles or "Alignability"
- Proportionality constant between magnetic dipole moment and magnetic field is the magnetic dipole polarizability, β_{M1}.
- Two contributions, paramagnetic and diamagnetic, and they cancel partially, giving $\beta_{M1} < \alpha_{E1}$.

Use the well-understood EM interaction (QED) to gain information on force holding system together, the strong nuclear force (QCD).

Real Compton Scattering from the Nucleon

Low-energy outgoing photon plays the role of the applied EM field.

 \Rightarrow Nucleon Response

\Rightarrow POLARIZABILITIES!

Global response to internal degrees of freedom.

Real Compton Scattering – Hamiltonian

Expand the Hamiltonian in incident-photon energy.

0th order \longrightarrow charge, mass

1st order \longrightarrow magnetic moment

2nd order \longrightarrow scalar polarizabilities:

$$\mathcal{H}_{\mathsf{eff}}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{\boldsymbol{E1}} \vec{E}^2 + \frac{1}{2} \beta_{\boldsymbol{M1}} \vec{H}^2 \right]$$

3rd order \rightarrow spin (or vector) polarizabilities:

$$\begin{aligned} H_{\text{eff}}^{(3)} &= -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) \right. \\ &\left. -\gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right] \end{aligned}$$

where $E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i)$ and $H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i)$

Scalar Polarizabilities – EFTs vs. DRs

Systematic effect with EFTs consistently higher than DRs!?

New PDG Result and Reanalysis - Proton and Neutron

McGovern, Phillips, Grießhammer, EPJA 49, 12 (2013)

Situation for both the **proton** and (especially) the **neutron** could be improved. . .

D. Hornidge (Mount Allison University)

Compton Scattering and Polarizabilites

Scalar Polarizabilities - Direct Measurement

Linearly Polarized Beam

Different dxs combinations are dependent only on α_{E1} or β_{M1} :

$$\frac{d\sigma^{\perp} - d\sigma^{\parallel}}{d\Omega} = f_1(\text{Born}) - \frac{e^2}{2m} \left(\frac{\nu'}{\nu}\right)^2 \nu\nu' \alpha_{E1}(1-z^2) + O(\nu^3)$$
$$\frac{z^2 d\sigma^{\perp} - d\sigma^{\parallel}}{d\Omega} = f_2(\text{Born}) - \frac{e^2}{2m} \left(\frac{\nu'}{\nu}\right)^2 \nu\nu' \beta_{M1} z(z^2 - 1) + O(\nu^3)$$

New work by Krupina and Pascalutsa [PRL **110**, 262001 (2013)] At low energies \Rightarrow use beam asymmetry Σ_3 to extract β_{M1} :

$$\begin{split} \Sigma_3 &\equiv \frac{d\sigma^{\perp} - d\sigma^{\parallel}}{d\sigma^{\perp} + d\sigma^{\parallel}} \\ &= \Sigma_3^{\mathrm{B}} - f_3(\theta) \beta_{M1} \nu^2 + \mathcal{O}(\nu^4). \end{split}$$

Spin Polarizabilities of the Proton

• Nucleon has 4 spin or vector polarizabilities:

 γ_{E1E1} γ_{M1M1} γ_{M1E2} γ_{E1M2}

- Similar to scalar polarizabilities (α_{E1} and β_{M1}), but higher in order.
- Intimately connected to the nucleon's spin structure. Fundamental structure constants!
- Higher order in incident-photon energy, small effect at lower energies.
- Need theoretical help in extracting values.
- Note: each spin polarizability is dominated by a pion-pole contribution. The dispersive (interesting) part is relatively small.

In his closing remarks at MAMI and Beyond in 2009 and again at the SFB1044 Kick-off in September 2012, B. Holstein listed the spin polarizabilities as the <u>number one</u> priority.

Spin Polarizabilities - Recent Status

γ	<i>p</i> ⁴HB	ϵ^3 SSE	Theory NNLO	DRs	Kmatrix	Experiment
<i>E</i> 1 <i>E</i> 1	-1.4	-5.4	-4.5	-4.3	-5.0	no data
M1M1	3.3	1.4	3.7	2.9	3.4	no data
<i>E</i> 1 <i>M</i> 2	0.2	1.0	-0.9	0.0	-1.8	no data
<i>M</i> 1 <i>E</i> 2	1.8	1.0	2.2	2.1	1.1	no data
0	-3.9	2.0	-0.7	-0.7	2.3	$-1.01 \pm 0.08 \pm 0.13$
π	6.3	6.8	11.3	9.3	11.3	$\textbf{8.0} \pm \textbf{1.8}$

Proton spin polarizability predictions and measurements in units of 10^{-4} fm⁴. The pion-pole contribution has been subtracted.

Note the large absolute error on γ_{π} .

Asymmetries – D. Babusci et al., PRC 58 1013 (1998)

Beam: circular Target: longitudinal

$$\Sigma_{2z} = \frac{\sigma_{+z}^R - \sigma_{+z}^L}{\sigma_{+z}^R + \sigma_{+z}^L} = \frac{\sigma_{+z}^R - \sigma_{-z}^R}{\sigma_{+z}^R + \sigma_{-z}^R}$$

Beam: circular Target: transverse

$$\Sigma_{2x} = \frac{\sigma_{+x}^R - \sigma_{+x}^L}{\sigma_{+x}^R + \sigma_{+x}^L} = \frac{\sigma_{+x}^R - \sigma_{-x}^R}{\sigma_{+x}^R + \sigma_{-x}^R}$$

Seam: linear, || and ⊥ to scattering plane Target: unpolarized

$$\Sigma_3 = rac{\sigma^{\parallel} - \sigma^{\perp}}{\sigma^{\parallel} + \sigma^{\perp}}$$

The Mainzer Mikrotron (MAMI)

Detector System: CB-TAPS

CB: 672 Nal detectors

TAPS: 384 BaF_2 detectors with individual vetoes

24-scintillator PID barrel

96% of 4π sr!

GEANT4 View

Cylindrical Wire Chamber Čerenkov Detector

Detector System: CB-TAPS

D. Hornidge (Mount Allison University)

Compton Scattering and Polarizabilites

Experimental Set-Up for $\Sigma_{2x}/\Sigma_{2z}/\Sigma_3$ and α_{E1}, β_{M1}

Standard A2 Equipment was used:

- MAMI electrons
- Glasgow-Mainz Tagger
- CB-TAPS detector system
- Cryogenic Targets

Run Parameter	Σ_{2x}/Σ_{2z}	Σ_3 and α_{E1}, β_{M1}
Electron Beam Energy	450 MeV	883 MeV
Target	butanol	LH_2
Radiator	Copper	Diamond
Tagged Energy Range	100 – 400 MeV	100 – 400 MeV
Channel Energy Resolution	1 MeV	2 MeV
Beam Polarization	circular	linear
Target Polarization	transverse/longitudinal	none

- Small Compton scattering cross sections.
- Large backgrounds:
 - π^0 photoproduction cross section is about *100 times* that of Compton scattering.
 - $\bullet\,$ Coherent and incoherent reactions off of C, O, and He for butanol.
- A source of polarized protons is not easy to come by (or to operate).
- In Δ -region, proton tracks are required to suppress backgrounds, but energy losses in the LH₂ target, frozen-spin cryostat, and CB-TAPS are considerable.
- Under certain conditions, π^0 photoproduction can mimic Compton scattering. . .

α_{E1}, β_{M1} : Preliminary Asymmetries – Sokhoyan & Downie

More data are need.

D. Hornidge (Mount Allison University)

Σ_{2x} : Results – Martel & Miskimen

 $E_{\gamma} = 273 - 303 \, \text{MeV}$

The recent (MAMI) and older (LEGS) Σ_3 measurements along with two theoretical curves using their preferred polarizabilities.

 Σ_3 : Results – Collicott

D. Hornidge (Mount Allison University)

Compton Scattering and Polarizabilites

13 June 2015 21 / 31

 Σ_3 : Results – Collicott

 $E_{\gamma} = 287 - 307 \, \text{MeV}$

13 June 2015 22 / 31

Fitting

Dispersion relation fitted to Σ_{2x} along with either $\Sigma_3^{\rm MAMI}$ or $\Sigma_3^{\rm LEGS}$ – G. Blanpied et al., PRC 64, 025203 (2001)

	Σ_{2x} and $\Sigma_3^{ m LEGS}$	Σ_{2x} and Σ_3^{MAMI}
$\bar{\gamma}_{E1E1}$	-3.5 ± 1.2	-5.0 ± 1.5
$\bar{\gamma}_{M1M1}$	3.16 ± 0.85	3.13 ± 0.88
$\bar{\gamma}_{E1M2}$	-0.7 \pm 1.2	1.7 ± 1.7
$\bar{\gamma}_{M1E2}$	1.99 ± 0.29	1.26 ± 0.43
γ_0	$\textbf{-1.03}\pm0.18$	-1.00 ± 0.18
γ_{π}	9.3 ± 1.6	7.8 ± 1.8
$\bar{\alpha} + \bar{\beta}$	14.0 ± 0.4	13.8 ± 0.4
$\bar{\alpha} - \bar{\beta}$	7.4 ± 0.9	6.6 ± 1.7
χ^2/dof	1.05	1.25

Scalar polarizabilities in units of $10^{-4} \, \text{fm}^3$ Spin polarizabilities in units of $10^{-4} \, \text{fm}^4$

Spin Polarizabilities - New Results

~	Theory					Experiment
/	p⁴HB	$\epsilon^{3}SSE$	NNLO	DRs	Kmatrix	Experiment
<i>E</i> 1 <i>E</i> 1	-1.4	-5.4	-4.5	-4.3	-5.0	-5.0 ± 1.5
<i>M</i> 1 <i>M</i> 1	3.3	1.4	3.7	2.9	3.4	$\textbf{3.13} \pm \textbf{0.88}$
<i>E</i> 1 <i>M</i> 2	0.2	1.0	-0.9	0.0	-1.8	1.7 ± 1.7
<i>M</i> 1 <i>E</i> 2	1.8	1.0	2.2	2.1	1.1	$\textbf{1.26} \pm \textbf{0.43}$
0	-3.9	2.0	-0.7	-0.7	2.3	-1.00 ± 0.18
π	6.3	6.8	11.3	9.3	11.3	7.8 ± 1.8

Proton spin polarizability predictions and measurements in units of 10^{-4} fm⁴. The pion-pole contribution has been subtracted.

The errors could still be improved...

Σ_{2z} – Estimated Experimental Precision

D. Hornidge (Mount Allison University)

Compton Scattering and Polarizabilites

Important part of the CRC1044 in Mainz.

Experiment	Status	
Σ _{2x}	February 2011	
Σ ₃	December 2012	
$lpha_{E1},eta_{M1}$	June 2013	
Σ _{2z}	May 2014	

The "Other" Nucleon - The Neutron

Situation is considerably worse than for the proton:

- No free neutron target.
- Neutron is uncharged.
- Small data set!

Techniques:

- Low-energy neutron scattering.
- Elastic Compton scattering from deuterium.
- QF Compton scattering from deuterium.
- Compton scattering from heavier nuclei.

Nuclear Effects are NOT negligible!

Baldin sum-rule constraint also employed:

$$\alpha_{E1}^{n} + \beta_{M1}^{n} = \frac{1}{4\pi^{2}} \int_{v_{0}}^{\infty} dv \frac{\sigma_{\mathsf{abs}}}{v^{2}} = (15.2 \pm 0.4) \times 10^{-4} \, \mathrm{fm^{3}}$$

M.I. Levchuk and A.I. L'vov, NPA 674, 449 (2000).

ChPT for ${}^{3}\text{He}(\gamma,\gamma){}^{3}\text{He}$

Relatively new idea for extraction of scalar polarizabilities for the neutron. Shukla, Nogga, and Phillips, NPA **819**, 98 (2009).

Sensitivity α_{E1}^n

Sensitivity β_{M1}^n

Theory is promising, but still needs some work... Proposal A2-01-2013 for ${}^{3}\text{He}(\gamma, \gamma){}^{3}\text{He}$ Given a rating of A by the PAC!

Hadron Polarizabilities - What do they tell us?

- Important tool for *testing* QCD via ChPT & DRs in the non-perturbative regime.
- **2** Both theory and experiment are very active at the moment.
- Solution We can expect lots of new results in the near future.

- Finish analysis and publish Σ_3 , α_{E1} , β_{M1} , and Σ_{2z} results.
- ② Complete global extraction of the proton spin polarizabilities.
- Continue development of an active polarized target. Polarizable scintillators have been developed at UMass.
- Active, high-pressure helium target for approved neutron polarizability experiments.
- Can we use deuterated butanol in the Frozen Spin Target for neutron spin polarizabilities? *Feasibility studies are upcoming.*
- Timelike VCS measurements.

HQP in the Last 5 Years

- 3 PDFs
- 3 Graduate students
- 22 Undergraduates