Ultracold Neutrons and Neutron EDM

J. Martin

The University of Winnipeg

T. Adachi¹, E. Altiere², T. Andalib^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, M. Chin⁵, C. Davis⁵, F. Doresty⁴, M. Gericke⁴, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, B. Jamieson³, S. Jeong¹, D. Jones², K. Katsika⁵, S. Kawasaki¹, T Kikawa^{5,6,1}, A. Konaka^{5,8}, E. Korkmaz⁷, M. Lang³, T. Lindner⁵, L. Lee^{4,5}, K. Madison², J. Mammei⁴, R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸, E. Miller², T. Momose², S. Page⁴, R. Picker⁵, E. Pierre^{6,5}, W.D. Ramsay⁵, L. Rebenitsch^{3,4}, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹, and J. Weinands²

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada

Ultracold Neutrons (UCN)

- Neutrons that are moving so slowly that they bounce off surfaces and can be bottled.
 - -v < 8 m/s = 30 km/h
 - -T < 4 mK
 - K.E. < 300 neV
- Interactions:
 - Gravity:

 - Strong:
 - Weak:

What are the best experiments for UCN?

- Those best using their long storage/spin coherence time:
 - Neutron EDM (strong CP problem, SUSY CP problem, electroweak baryogenesis)
 - Neutron lifetime (BBN, V_{ud}/CKM unitarity)
 - Angular correlations, precision spectroscopy in beta decay $(V_{ud}/CKM, scalar/tensor currents)$
 - n-nbar oscillations? Quantum computing/error studies?
- Those best using their low energy
 - Neutron gravity levels above a mirror (gravity at μ m scales, chameleon fields, fifth force, ...)
 - Surface science of big organic molecules?
- Generally accepted that nEDM is top science priority for this field, given present UCN fluxes; it is our flagship experiment.
- Breakthrough in UCN production would improve precision of experiments, and open up new possibilities (free n target?)

Spallation-driven Superfluid He-II UCN Source

UCN production recipe:

- Spallation Liberate neutrons from W target
- *Moderation* Thermalize, cool neutrons in D₂0 ice
- Conversion Convert cold neutrons to UCN in He-II

400 MeV protons

General Layout of UCN Source at RCNP Osaka Cold neutron energy transferred to He-II via phonon emission

- Thermal, Cold & Ultra-Cold neutrons
- MeV neutrons

Moderators

Thermal: Graphite, $300K D_2O$ Cold: $10K D_2O$ ice

UCN Source (RCNP-TRIUMF)

Source developed and tested in Japan, shipping to TRIUMF in Oct. 2015

Beamline prepared at TRIUMF, for extended running periods at ~40x higher intensity

Connection to Phase I nEDM experiment

2012-2014: Develop/Test Source (& nEDM) at RCNP [1+ μA] 2015: Source moves to TRIUMF 2016: Commission Source at TRIUMF [ramp to 40μA]

Sakharov's Criteria and EW Baryogenesis Solutions

Criteria

EW Baryogenesis

Departure from thermal equilibrium
 B-violation
 CP-violation
 EW Baryogenesis Problems:
 EW phase transition not strong enough
 Not enough CP violation

D.E. Morrissey and M.J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012).

Requires new physics and CP-violation near the EW scale

Sensitivity to new sources of CP violation

e.g. SUSY CP problem and relationship to LHC

M. Pospelov and A. Ritz, A. Ritz, TRIUMF Summer Institute, 2012.

Sensitivity to SM sources of CP violation

- Strong sector may violate CP via θ term.
- Naively $\theta \sim 1$.
- Experimentally $\theta < 10^{-11}$, constrained mainly by nEDM.

Strong CP problem Solution: Peccei-Quinn symmetry, axions(?)

• CKM CP violation is 10⁻³¹ e-cm background

Electric dipole moments and CP violation

 $H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$

- The EDM (*d*) term violates CP.
- New sources of CP violation required in e.g. electroweak baryogenesis.

 $h\nu = 2\mu B \pm 2dE$

• Precision goal $\delta d_{\text{stat}} = 1.4 \text{ x } 10^{-25} \text{ e-cm/cycle},$ 10⁻²⁷ e-cm ultimately.

TRIUMF Neutron EDM Experiment

- Overview/Goals:
 - Our approach: Spallationdriven superfluid-helium UCN source connected to roomtemperature nEDM experiment.
 - Present world's best limit (Sussex/RAL/ILL) $d_n < 3 \ge 10^{-26} \text{ e-cm}$
 - SM (CKM) lower bound $d_n > \sim 10^{-31} \text{ e-cm}$
 - Our goal sensitivity: \bigcirc $\delta d_n \sim 10^{-27}$ e-cm ("phase 2") $\delta d_n \sim 10^{-28}$ e-cm (possible with source upgrades)

- Features of nEDM expt.:
 - New UCN source with potential world-leading density
 - Room temperature with flexibility e.g. to modify cell size in light of systematics vs. stats.
 - New dual ¹²⁹Xe 2-photon + ¹⁹⁹Hg comagnetometers
 - Improved magnetic field control, diagnostics.

TRIUMF Facility Overview

Recent UCN highlights

2014, TRIUMF (completed):

- septum
- dipole
- replacement of shielding towards cyclotron

2013-14, RCNP, Osaka:

 successful cooldown of new cryostat to 0.7 K

RIUMF

nEDN

- first UCN beam time
- UCN production and extraction demonstrated

Source commissioned (in Japan)

TP.

2014 Shutdown

prelim

future UCN facility at TRIUMF

Plan for TRIUMF Installation periods: ~Jan-Apr each year

Present Status of UCN Facility

Pyramid base UCN Source (2013-14, RCNP) successful cool down of new UCN cryostat to 0.7 K (\rightarrow 0.58 K) Source • ext. heat load from $1 \rightarrow 0.2$ W first UCN beam time • UCN prod.ⁿ in ⁴He (natural) and extraction demonstrated Target in 2016 (despite large ³He fraction) D/S section 2015 0110 Vault Components M13 Decommission Quads & D/S section Shield Pyramid Base Dino BL1A Vault section U/S section 2014 Septum • Dipole & Girder Kicker in 2016 Shielding Plug

2015 Highlights and 2016 plans

Base shielding underneath UCN source

Last beamline elements before target

- Design/safety review June 2015
- Target design review July 2015
- UCN source shipment Oct. 2015
- More reviews
- Begin installation of final components January 2016.
- First UCN fall 2016.

Roadmap Towards nEDM

nEDM experiment first priority (after UCN source commissioning)

nEDM Phase 1

- use existing EDM Ramsey apparatus from RCNP, Osaka
- exploit higher UCN density at TRIUMF (also more beamtime available)
- room temperature, **1 small cell**, vertical loading, spherical B₀ coil
- small incremental improvements until replaced by Phase 2
 - Active magnetic compensation system
 - high voltage
 - comagnetometer
 - high-flux detector

EDM Phase 1 at RCNP

Phase 2: Cold Moderator Upgrade to LD₂

nEDM Phase 2 – circa 2019?

room temperature

improvements

- higher UCN density with LD₂ moderator
- 2 cells, probably "horizontal" loading
- dual Xe/Hg comagnetometer
- improved magnetic environment
- simultaneous counting of both polarizations
- Sensitivity goal: $d_{\rm n} < 10^{-27} \, {\rm e} \cdot {\rm cm}$

- ongoing extensive R&D program
 - Magnetic fields
 - UCN detector
 - comagnetometer
 - HV/EDM cell
 - simulations

Canadian EDM R&D

Magnetic environment

- active shielding
- passive shielding
- creation of stable, homogeneous B fields
- Precision atomic magnetometry and SQUIDs

THE UNIVERSITY OF WINNIPEG

Cylindrical shells of the 4 layer FM shield

Dual Co-magnetometer

- Hg, Xe polarisation
- laser development
- 2-photon transition requires development of intense CW UV lasers.
- Xe EDM measurement

Simon Fraser University

UCN detection Lightguides Need faster detectors Li glass scintillators + lightguide + PMTs Test run in August 2015 at PSI R&D towards dual detectors which count both spin states simultaneously. $n+^{6}Li \rightarrow ^{3}H$ (2.74 MeV) $+^{4}He$ (2.05 MeV) **PMTs** Li glass UCN detection scheme THE UNIVERSITY OF UNIVERSITY OF MANITOBA TRIUMF Electric field, UCN cell

- dielectric strength of Xe at 10⁻³ mbar unknown
- 50x100 mm cylindrical test cell
- gas breakdown studies
- material studies

HV test cell

Long-Range Plan

- <u>2017-2021</u>: improvements to UCN source and nEDM experiment
 - 2017-2018 CFI proposal for major upgrade to UCN source and nEDM experiment (\$12M) leveraged by Japan support and TRIUMF 5YP support (\$1.6M)
 - NSERC support ~\$800k/yr (presently ~\$500k/yr)
- <u>2022-2026</u>: development of facility and other UCN experiments
 - Neutron lifetime in a magnetic trap
 - Neutron gravity levels
 - Cost scale ~\$5M/expt. Expect new international users and support for these experiments.

Summary

- UCN source testing (RCNP) and installation of beamline components (TRIUMF) proceeding on schedule.
- R&D progress for the neutron EDM experiment.
- Phase I nEDM operating by 2016-17
- Phase II application aiming at sub-10⁻²⁷ e-cm precision planned for 2017-18.

More info and backups

Recent achievements

- Recent publications on magnetic field R&D and UCN detector (see our draft brief)
- Recent MSc theses (several MSc and PhD in progress) (see draft brief)
- Conference proceedings/presentations (most recent one is Larry Lee at SSP2015, Victoria, BC, several others this week at CAP)
- Facility, installation at TRIUMF (see this talk and Larry's talk at SSP)

Example nEDM R&D achievement: Precision atomic magnetometry with Rb

magnetometer.

"Large magnetic shielding factor measured by nonlinear magneto-optical rotation," J.W. Martin, R.R. Mammei, W. Klassen, C. Cerasani, T. Andalib, C.P. Bidinosti, M. Lang, and D. Ostapchuk, Nucl. Instr. Meth. A 778, 61-66 (2015).

NSERC Faculty Research FTE's

Name	Institution	FTE
C Didinacti	11 Minning	0.4
C. Diumosti	0. Winnpeg	0.4
J. Birchall	U. Manitoba	0.3
M. Gericke	U. Manitoba	0.1
B. Jamieson	U. Winnipeg	0.5
D. Jones	UBC	0.3
A. Konaka	TRIUMF	0.2
E. Korkmaz	UNBC	0.3
T. Lindner	TRIUMF/U. Winnipeg	0.1
K. Madison	UBC	0.3
J. Mammei	U. Manitoba	0.1
R. Mammei	U. Winnipeg	0.9
J. Martin	U. Winnipeg	0.8
T. Momose	UBC	0.3
W. van Oers	U. Manitoba/TRIUMF	0.3
S. Page	U. Manitoba	0.1
R. Picker	TRIUMF	1.0
J. Sonier	SFU	0.1
<u>Joint Positio</u>	n TRIUMF/U. Winnipeg	0.9
Total		7.0

- This is list expected for our next renewal April 2015
- Also ~4 Japan faculty FTE's
- Expect 1-2 more Canadians to join over next 5YP period, and some Japanese
- More international users once facility is operational and time can be dedicated to other experiments (2022-)

Full Collaboration List (06/2015)

T. Adachi¹, E. Altiere², T. Andalib^{3,4}, C. Bidinosti^{3,8}, J. Birchall⁴, M. Chin⁵, C. Davis⁵, F. Doresty⁴, M. Gericke⁴, S. Hansen-Romu^{3,4}, K. Hatanaka⁶, B. Jamieson³, S. Jeong¹, D. Jones², K. Katsika⁵, S. Kawasaki¹, T Kikawa^{5,6,1}, A. Konaka^{5,8}, E. Korkmaz⁷, M. Lang³, T. Lindner⁵, L. Lee^{4,5}, K. Madison², J. Mammei⁴, R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸, E. Miller², T. Momose², S. Page⁴, R. Picker⁵, E. Pierre^{6,5}, W.D. Ramsay⁵, L. Rebenitsch^{3,4}, J. Sonier⁹, I. Tanihata⁶, W.T.H. van Oers^{4,5}, Y. Watanabe¹, and J. Weinands²

¹KEK, Tsukuba, Ibaraki, Japan
²The University of British Columbia, Vancouver, BC, Canada
³The University of Winnipeg, Winnipeg, MB, Canada
⁴The University of Manitoba, Winnipeg, MB, Canada
⁵TRIUMF, Vancouver, BC, Canada
⁶RCNP, Osaka, Japan (Osaka University, Osaka, Japan)
⁷The University of Northern BC, Prince George, BC, Canada
⁸Osaka University, Osaka, Japan
⁹Simon Fraser University, Burnaby, BC, Canada

Grad students highlighted in red Typically 8-10 undergraduates per year (not listed)

More collaborators always welcome:

- nEDM R&D, future UCN source R&D, future experiments R&D