REPRESENTATION THEORY FOR MULTIPHOTON INTERFEROMETRY Ish Dhand, Barry C. Sanders, Hubert de Guise

Multichannel Linear Optical Interferometer

Brute Force Interferometer Simulation

CALGARY

• n photons in m channels:

- Not intuitive for interpreting outputs.
- Expensive. $O(n!^2)$ cost of computing outputs.

Why Linear Optics? Theory and Experiment

Linear optics is powerful for quantum computing and control:

- Linear optics + detectors is universal for quantum computing,
- Sampling linear optics outputs is classically hard,
- Optical quantum walk nonclassical behaviour.

Rapid advance in experimental implementation:

- On-demand single-photon sources,
- Efficient number-resolving detectors with low dark counts,
- Tunable photonic integrated circuits to implement arbitrary linear optics protocol.

Problem

The current procedure for simulation of multi-photon multi-channel interferometers is suboptimal and not intuitive.

Results: Algorithms for Boson Realizations, \mathcal{D} -Functions and Interferometry

- New graph-theoretic algorithm for computing boson realizations and \mathcal{D} -functions of $\mathrm{SU}(n)$ irreps for arbitrary n.
- New algorithms for performing interferometry using \mathcal{D} -functions.

Representation theory enables us to exploit permutation symmetries inherent in bosons to effect a reduction in the computational cost of simulating interferometers.