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« SWs in the granular chain are not preserved in
collisions with other SWs or boundaries. Rather, the SW . ] o
breaks up and reforms in the collision process, » Transition to quasi-equilibrium: Actual equilibrium?
resulting in the partial destruction of the initial SW and

the birth of secondary solitary waves (SSWSs). m T Quasi- breakdown  Extreme long-term behaviour (~ 1-10s):
Characteristic Equilibrium L f initial SW
equilibrium Or Initia 5 5
- A sufficiently long time after an initial perturbation to paussan SN | o ' _ Generalized equipartition theorem: <q@-8—%> = <Pz'8—%> = kpTd;
the system, rates of breakdown and creation processes Ergodicity: < VI ~ g
of SSWs balance and the chain reaches a steady state (K)n = (K)¢ [P . (B - (25— Lot
[ — Hlihri 6 Dependence on initial | ‘ = a5 _— i) — akB1; i) = —KB
called the guasi-equilibrium (QEQ) phases. dence on X | X 2 2 -
_ _ _ Equipartitioning of </;f x :' cold and hot B — kT kT > O — d(E) (n+?2 .
 Here we investigate how the system's journey to QEQ energy - I d _ Spots (B) = ——+— v = g T\ 9y ) B S depends only
can be tuned by varying the material parameters of the on n
granular chain system, and the effects of introducing o Relati .. . . _
: : : . TR _ x elating specific heat to kinetic energy fluctuationss:
an inertial mismatch at the boundary on the onset and Quantifying the transition:  [vma|=va (effC[ 5 D + o8 - -
rate of relaxation to the QEQ phase. , 2 1 5 5 \1/2
pom! | |D=0.{)ID? (stailnlcss stlocl) _ y=la*crfc(|b*(x—c)l)+d | . | | | DWL 50(;0& Wf;ll) — ;=a*¢;rfc(b*:(x-c)):|-d | O-KE o N - 20,0 — OKE = N n _I_ 2 \
+  We subsequently analyze the extreme long-term e cleen depends only
behaviour of these granular systems. . cmtoes ] l s
E e E | 'l | " ; o Kinetic energy fluctuations: Specific heat:
A et S dets N | - 0.181 1.57
N | ' ! ,\lnlul ll' I, e . | ol
2e-05 2e-05 0.161 1.3-
0 "To000 20000 30000 30000 50000 0010000 20000 30000 30000 50000 60000 0.141 e
- Grains interact only when they are in physical contact, - o OKE | 1o] o
and the interaction is governed by the intrinsically 0.10, 0!
nonlinear Hertz potential”: 5 Relaxation rates (homogeneous systems): - 0.8
. 0.08- | | | . . o7 | | . |
/9 . . T2 3 a5 e I
.. —_ .. T = J. T n n
V(éz]) - A'L] 52.] = - (a) g - (b) Predicted o, for N=38 Predicted C, ® N=38 ® N=100
\% 475_ L :; 5_ | Predicted oy for N=100
8 4.5 - .% 475 i
£ ‘ &
A — 2 R?,RJ *é‘ 4.25__ B —E 4.5r N
Y 5D’Lj R’L + RJ 4 § 4r — y=A*x+B § 4.25r — y=A*x+B |
X X; o 3’75__ A = 03292 % 4__ A =03823
:? - B = 4.2406 0 - B =4.4584
o _ RN 3.5~% 2 = 3.75F 2_ - - .
3[1-02 1-02 0ij = 2R — (xj — ;) = 0 Sl S o5 K097 ] . Softer grains lead to slower SW propagation speeds.
Di=11—v *—+ 3235 2115 21050 05 1 15 2 35215 -1 05 0 05 1 15 2
Z ! 0ij = Ui — uj =0 log, [pD (mm/us) "] log, [pD (mm/us) "] : : : :
E10tP : E10P : - Softening the walls introduces a time delay in the
| | g reflection of SWs at boundaries, leading to: (1)
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