Search for heavy gluon and vector-like quark in the 4b final state at 8 TeV

Frédérick Dallaire on behalf of the ATLAS Collaboration

CAP 2015, Edmonton

mardi 16 juin 2015

Model

- Hbb production in Composite Higgs Models : 1305.1940
 - new strong dynamics for EWSB
 - SM particles are considered elementary (except for the Higgs)
 - new particles belong to the composite sector
 - composite fermions mix with elementary sector → partial compositeness
- Single production of bottom partners (B_H) : $pp \rightarrow G^* \rightarrow B_H b \rightarrow H(\rightarrow bb)bb$
 - exchange of heavy gluons (G*) via the s-channel
 - decay to Higgs boson $(H \rightarrow bb) + SM$ bottom quarks
 - cross sections not large enough for $\gamma\gamma$ and ZZ channels

Backgrounds

- Largest background is QCD
 - estimated with data-driven technique (discussed later)
- Other backgrounds are estimated with the following MC

Process	Generator	$\sigma imes { m BR} \; [{ m pb}]$	$N_{ m events}$
top quark			
$t ar{t}$	Powheg+Pythia	238.06	$25\mathrm{M}$
<i>t</i> -channel	Powheg+Pythia	26.92	10M
<i>s</i> -channel	Powheg+Pythia	1.64	6M
Wt-channel	Powheg+Pythia	32.38	3M
$t\bar{t}+Z$	Pythia	0.068	400k
$t\bar{t} + H(\rightarrow b\bar{b})$	Pythia	0.034	50k
Diboson			
WW	Powheg+Pythia	55.43	$2.5\mathrm{M}$
WZ	Powheg+Pythia	22.69	250k
$66 < m_{\ell\ell} < 116 \text{ GeV}$			11 A
ZZ	Powheg+Pythia	7.697	1M
$66 < m_{\ell\ell} < 116 \text{ GeV}$			
W/Z+jets			
$W o \ell u$	Sherpa 1.4.1	10.97	168M
$Z/\gamma^* o \ell\ell$	Sherpa 1.4.1	1.24	42M
$m_{\ell\ell} > 40 \mathrm{GeV}$			
$Z/\gamma^* ightarrow u u$	Sherpa 1.4.1	6.71	$77\mathrm{M}$
$m_{\nu\nu} > 5 \mathrm{GeV}$			
$Z \to b\bar{b}$	Sherpa 1.4.1	140.55	6M

mardi 16 juin 2015

Object definition

- Jets :
 - AntiKt R=0.4 LCTopo, $p_T > 50$ GeV, $|\eta| < 2.5$
 - b-tagging : MV1 at 70% efficiency
- Fat jets :
 - AntiKt R=1.0 (trimmed)
- Electron veto :
 - $p_T >$ 10 GeV, $|\eta| <$ 2.7 and medium ++
 - ptcone20/p_T < 0.15
 - Etcone20/ $E_T < 0.14$
- Muon veto :
 - p_T > 10 GeV
 - track_cone_pt20/ $p_T < 0.1$
- No overlap between jets and isolated leptons

Signal Region – merged

- Higgs jet
 - fat jet with mass closest to the Higgs mass (126 GeV)
 - p_T > 300 GeV, |η| < 2.0
 - at least one AntiKt4 b-tagged jet has to be within 0.4the Higgs fat jet ($\Delta R(h,b) < 1$)
 - AntiKt1.0 \rightarrow 90 < M(J) < 140 GeV
- Two highest p_T jets away from the Higgs (ΔR(h,b) > 1.4) are used to reconstruct B and G*
 - both jets are b-tagged in the SR
- B_H: 4-vector sum of the higgs fat jet and either the leading or next-to-leading b-tagged jet away from the Higgs (depends on the G*-B mass spliting)
- G*: 4-vector sum of the higgs fat jet and the two b-tagged jets away from Higgs

Signal Region – resolved

- Exactly 4 AntiKt4 LCTopo jets with $p_T > 50$ GeV and $|\eta| < 2.5$
- Higgs : 2 jets which form the closest mass to the Higgs'
 - 90 < M(jj) < 140 GeV
- B_H: 4-vector sum of the Higgs of either the leading or next-to-leading jet away from the Higgs (depends on the G*-B mass spliting)
- **G*** : 4-vector sum of the 4 jets
- Resolved and merged analysis are orthogonal to each other
 - if event doesn't pass merged criteria → try resolved case

Categories, SR1-SR5

- ratio of leading efficiency over next-to-leading efficiency ($r = \epsilon_L/\epsilon_{NL}$)
 - efficiency is defined as the ratio of events passing all the SR cuts + B mass window cut (± 200 GeV of the nominal mass) over the events passing all the SR cuts
- Category 1 : next-to-leading jet is assumed to be from B decay (r < 1)
- **Category 2 :** leading jet is assumed to be from B decay (r > 1)

QCD Background

- Largest background is QCD multijet
- Estimated with an ABCD data-driven technique
- 3 orthogonal control regions
- Higgs sideband region (== 2 or >2 b-tagged jets) (B&D)
- Higgs window with exactly 2 b-tagged jets (C)
- # events in the SR $\rightarrow N_{\rm SR}^{\rm QCD} \times N_{\rm D} = N_{\rm B} \times N_{\rm C}$
- ttbar, single-top, diboson and V+jets BG are removed from each of the CR (using MC)
- this estimation is done separately in each of the 5 SRs
- M(J) > 30 GeV

Higgs sideband	D	В	-
Higgs mass window	С	SR	
	b-jets == 2	b-jets > 2	

Validation of multijet BG

- Validation region defined in the sidebands of the Higgs mass
- Region C' is now [75,90] and [140,155] GeV (b-tag = 2)
- Regions B' and D' : 30 < M(J) < 75 GeV &&
 M(J) > 155 GeV (B' : b-tag = 2, D' b-tag ≥ 3)
- non-QCD BG removed
- → compare estimated nb. of events to observed nb. of events in VR

QCD multijet yields

Merged

Resolved

445.88

1128.71

	Algorithm		Number of events							
1	Algorithm	В	С	D	VR (exp.)	VR (obs.)	SR (exp.)			
Τ	Merged	1753.4	15080.8	24314.8	529 ± 18	529 ± 24	1088 ± 30			
	Resolved	4510.8	31503.5	68883.7	1127 ± 22	1101 ± 34	2063 ± 34			

	Algonithm	Number of events								
CD 2	Algorithm	В	С	D	VR (exp.)	VR (obs.)	SR (exp.)			
JNZ	Merged	670.67	7018.24	12105.7	198 ± 10	183 ± 14	389 ± 17			
	Resolved	1754.28	11033.7	28858.6	362 ± 11	341 ± 19	671 ± 18			
		•	•				·			
	Algorithm	Number of events								
CD2		В	С	D	VR (exp.)	VR (obs.)	SR (exp.)			
	Merged	4808.24	43668.8	63420.9	1560 ± 32	1589 ± 42	3311 ± 55			
	Resolved	11488.1	126851.	162491.	3949 ± 51	4088 ± 65	8968 ± 91			
		•	•							
	Algorithm		Number of events							
	Aigoritiini	В	С	D	VR (exp.)	VR (obs.)	SR (exp.)			
		115 00	F001 0C	0404.90	100 0	194 10	070 ± 19			

ATLAS Work in progress

 250 ± 13

 545 ± 18

S	R	5	

S

Algonithm	Number of events										
Algorithm	В	С	D	VR (exp.)	VR (obs.)	SR (exp.)					
Merged	147.86	1786.85	3211.56	42 ± 5	38 ± 6	82 ± 8					
Resolved	339.92	2415.65	5439.96	67 ± 5	70 ± 9	151 ± 9					

9404.36

19223.2

 126 ± 8

 257 ± 10

 134 ± 12

 253 ± 16

• Observed number of events in control and validation regions

5281.06

9276.13

• Non-QCD backgrounds are removed from CR, VR (obs.) and SR

Systematic uncertainties

- Stat. uncert. of the data in CRs
- Non-closure of the VR (syst. uncert. due to the difference between observed and predicted numbers in the validation region) : $r = N_{obs}/N_{exp}$
 - if r is consistent with 1 (within 1σ) $\rightarrow \Delta r$
 - otherwise |r-1| is the relative uncert.
- Dectector syst. uncert. of the MC-based backgrounds (JES : components leading to an upper (lower) yield are added in quadrature to JESUp (JESDown)

	systematic uncertainty		SR1		SR2	S	R3	SR4	SR5	
	VR non-closure		5.1%		7.5%	3	8.%	10.2%	18.9%	10100
	Jet Energy Resolution	-	+0.87%		+0.26%	-1.	.53%	0.01%	-1.70%	
	JES AntiKt4	+0.4	9% -0.61%	+0.	41% -0.76%	+0.62%	% -0.72%	+0.69% $-0.76%$	+0.29% $-0.72%$	
	JES AntiKt10	+0.5	8% -1.09%	+0.	63% -1.41%	+1.32%	% -1.17%	+0.82% $-1.21%$	+0.39% $-0.76%$	
_	Mass AntiKt10	+0.1	1% -0.07%	+0.	19% -0.42%	+0.06%	% -0.23%	+0.08% -0.40%	+0.18% $-0.30%$	
Meraed	b-tagging SFs - Total	0.23	3% 0.32%	0.3	32% 0.32%	0.05%	6 0.40%	$0.40\% \ 0.05\%$	0.31% -1.14%	
J	b-tagging SFs - high p_T	0.45	5% 0.11%	0.6	69% 0.05%	0.28%	6 0.22%	0.57% - $0.04%$	0.33% -1.10 $%$	
	Luminosity		0.26%		0.24%	0.3	30%	0.23%	0.22%	
	data/MC statistical (CR)		2.50%		4.02%	1.4	49%	4.83%	9.20%	
	MC/QCD statistical (SR)	2.75%		4.73%		1.5	57%	5.95%	10.34%	
	Total (stat.)		2.75%	4.73%		1.5	57%	5.95%	10.34%	•
	Total (syst.)	5.91%		8.71%		4.0	03%	11.41%	21.18%	
					ł			1/		ATLAS Work in
	systematic uncertainty		SR1		$\mathbf{SR2}$	- 61	SR3	SR4	SR5	progress
	VR non-closure		3.5%		5.9%	1.1	3.2%	7.%	14.4%	
	Jet Energy Resolution		+1.64%		+1.41%	20/	+0.11%	-0.19%	-0.62%	
	JES AntiKt4		+0.70% -0.4	52%	+0.84% $-0.46%$	% + 0.	22% -0.28%	+0.52% -0.20%	+0.28% $-0.24%$	
	b-tagging SFs - Total (up/dc)	wn)	0.09% 0.78	8%	$0.09\% \ 0.72\%$	-0.	$06\% \ 0.71\%$	$-0.09\% \ 0.48\%$	-0.0006% 0.75%	
	b-tagging SFs - high p_T (up/d	lown)	0.43% 0.50	0%	$0.40\% \ 0.46\%$	0.3	$33\% \ 0.38\%$	$0.24\% \ 0.19\%$	$0.42\% \ 0.40\%$	
Kesolved	Luminosity		0.14%		0.13%	11	0.17%	0.15%	0.11%	
	data/MC statistical (CR))	1.59%		2.60%	1	0.98%	3.18%	5.92%	
	MC/QCD statistical (SR))	2.14%		3.73%		1.01%	4.04%	7.69%	
	Total (stat.)		2.14%		3.73%		1.01%	4.04%	7.69%	
	Total (syst.)		4.34%		6.71%		3.46%	7.73%	15.61%	- 44

BG yields in SRs

- Non-QCD BG contributions to the different signal regions is estimated with MC
- Stat. uncert. only for individual BG
 - stat. + syst. uncert. for total BG

	Background	SR1	SR2	SR3	SR4	SR5	
	multi-jet	1088 ± 30	389 ± 17	3311 ± 55	250 ± 13	82 ± 8	
	$tar{t}$	$89. \pm 3.8$	25.05 ± 2.05	334.5 ± 7.3	14.7 ± 1.6	3.9 ± 0.9	
	single top	6.8 ± 1.5	2.76 ± 0.97	17.7 ± 2.1	1.41 ± 0.71	-	
	di-boson				10		
Merged	$W/Z(\rightarrow \ell \nu) + jets$	8.2 ± 1.8	2.9 ± 1.2	2.7 ± 0.9	0.51 ± 0.54	0.5 ± 0.5	
5	$t\bar{t}-H$	0.49 ± 0.06	0.17 ± 0.04	2.01 ± 0.12	0.05 ± 0.03	0.01 ± 0.01	
	$t\bar{t}-W$	0.10 ± 0.02	0.013 ± 0.010	0.50 ± 0.05	0.013 ± 0.008	0.008 ± 0.006	
	$t\bar{t}-Z$	0.17 ± 0.02	0.05 ± 0.01	0.77 ± 0.05	0.014 ± 0.007	0.005 ± 0.005	
	$Z(\rightarrow b\bar{b}) + jets$	8.05 ± 0.60	3.51 ± 0.42	24.92 ± 0.94	1.85 ± 0.32	0.33 ± 0.09	
	Total BG	$1200 \pm 33 \pm 71$	$423 \pm 20 \pm 37$	$3694 \pm 58 \pm 149$	$269 \pm 16 \pm 31$	$87 \pm 9 \pm 18$	
					1/		ATLAS Work in
		1			11		progress
	Background	SR1	SR2	SR3	SR4	SR5	
	multi-jet	2063 ± 34	671 ± 18	8968 ± 91	545 ± 18	151 ± 9	

	multi-jet	2063 ± 34	671 ± 18	8968 ± 91	545 ± 18	151 ± 9	
	$tar{t}$	59.80 ± 3.08	16.7 ± 1.7	330.16 ± 7.2	13.8 ± 1.6	2.99 ± 0.67	
	single top	2.21 ± 0.57	0.29 ± 0.16	14.6 ± 1.8	0.61 ± 0.25		
	di-boson	0.05 ± 0.05		0.05 ± 0.03			
Resolved	$W/Z(\rightarrow \ell \nu) + jets$	3.9 ± 2.1	1.3 ± 0.5	40.4 ± 5.5	3.7 ± 1.8	0.1 ± 0.1	
	$t\bar{t}-H$	0.09 ± 0.03	0.02 ± 0.01	0.47 ± 0.06	0.02 ± 0.01		
	$t\bar{t}-W$	0.04 ± 0.02	0.02 ± 0.01	0.24 ± 0.03	_	-	
	$t\bar{t}-Z$	0.04 ± 0.01	0.01 ± 0.01	0.33 ± 0.03	0.01 ± 0.01	0.002 ± 0.002	
	$Z(\rightarrow b\bar{b}) + jets$	23.1 ± 1.1	8.20 ± 0.61	90.3 ± 2.0	6.37 ± 0.46	2.16 ± 0.28	
	Total BG	$2152\pm46\pm93$	$697 \pm 26 \pm 47$	$9408 \pm 95 \pm 326$	$569 \pm 23 \pm 44$	$156 \pm 12 \pm 24$	
		•	•				

Upper limits on signal yields

	Region	Expected	Exp. with cont.	Observed	
	SR1	109^{+60}_{-34}	108^{+60}_{-34}		
Merged	SR2	103^{+69}_{-33}	100_{-32}^{+67}	Dlinded	
	SR3	247^{+149}_{-82}	245^{+148}_{-81}	Biinded	
	SR4	76^{+70}_{-26}	74^{+68}_{-25}		
	SR5	56^{+221}_{-24}	52^{+203}_{-22}		K
-					ATLAS Work in progress
	Region	Expected	Exp. with cont.	Observed	
	SR1	181^{+74}_{-51}	179^{+74}_{-51}	1.	
Decelued	SR2	104^{+42}_{-29}	103^{+42}_{-29}	Divided	
Resolved	SR3	667^{+284}_{-191}	661^{+282}_{-190}	Blinded	
	SR4	66^{+31}_{-20}	66^{+31}_{-19}	//	
	SR5	46^{+22}_{-14}	45^{+22}_{-14}		

- upper limits on signal yields for merged and resolved assuming no signal contmination
- effect of signal contamination in the CRs
 - in each CRs, substract c_x from N_x where $c_x = f_x \cdot y_{limit}/1.64$
 - f_X : ratio of # signal events in CR X over # signal events in SR, y_{limit} is the 95% CL limit

mardi 16 juin 2015

Expected sensitivity

 M_{B}

signal cross section (fb)/expected combined limit (fb)

- Sensitivity : signal cross section compared to expected combined exclusion limit at 95% C.L.
- Red cells are expected to be excluded

Combined limit

- Expected limit as a function of $M(G^*)$ for $M(B) = M(G^*)/2$
- Green : combined upper limit on the total cross section
- Red : theory cross section with PDF uncertainty

Summary

- Composite Higgs models among the leading candidates to explain EWSB
 - VLQ predicted by many CH models
- 1st search for VLQ via heavy gluon in ATLAS
 - other searches via weak interactions
- Good sensitivity is expected
- Results later in the summer