Effect of lipid composition on peptide-induced coalescence in bicellar mixtures

<u>Chris Miranda¹</u>, Michael R. Morrow¹, Valerie Booth^{2,1}

Memorial University of Newfoundland and Labrador

¹Department of Physics and Physical Oceanography

²Department of Biochemistry

Protein-Lipid Interactions

Perturbation of bilayers by peptides can be important in many biological contexts. For example:

Lung surfactant
Antimicrobial activity

This Study:

• Compare effects of a lung surfactant peptide fragment and an antimicrobial peptide on a membrane model system (bicellar dispersions) whose organization is very sensitive to perturbing interactions

Ask:

- Do two peptides (both cationic and amphipathic but apparently different functionally) perturb the model system differently?
- Is the observed perturbation sensitive to bilayer composition (i.e. anionic lipid content)?

Surfactant Protein B

Surfactant Protein B

- SP-B:
 - 79 residue monomer
 - Cationic (+7), amphipathic, mainly hydrophobic
- SP-B_{C-TERM}
 - Amphipathic α-helix
 - Cationic (+3), mainly hydrophobic
 - Retains some functionality of full length SP-B

Magainin 2

- Amphipathic α-helix
 - Cationic (+4) and hydrophobic
- Suggested to disrupt membrane via pore formation

PDBID: 2MAG

Gesell, J. . Z. M. . O. S. J. (1997). Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. *J.Biomol.NMR*, *9*, 127–135.

Bicellar Mixtures

- Mixtures of long chain and short chain lipids
- Coalesce to larger structures upon warming

²H NMR of Bicelles

²H NMR

Deuteron splittings reflect motional averaging of orientational dependent quadrupole interaction

$$\Delta v_q = \frac{3}{2} \frac{e^2 qQ}{h} \left(\frac{3 \cos^2 \beta - 1}{2} \right) S_{CD}$$

Zwitterionic Bicellar Mixtures with/without SP-B_{C-TERM}

SP-B_{C-TFRM} and Bicellar Mixtures with Anionic Lipids

-40

-20

Frequency (kHz)

40

20

$DMPC-d_{54}/DMPG/DHPC$

- In lipid-only bicellar mixtures, anionic lipid lowers and sharpens the ribbon-to-extended lamellar transition.
- SP-B_{C-TERM} further lowers the ribbon-to-extended lamellar transition
- Implies that SP-B_{C-TERM} depends on the presence of anionic lipids to promote ribbonmicelle coalescence

Does SP-B_{C-TFRM} segregate DMPG?

How does Magainin 2 affect bicellar phase behaviour?

DMPC and DMPG appear to be in different environments in bicellar mixtures with Magainin 2

DMPC /DMPG- d_{54} /DHPC

- Spectra suggest that Magainin 2 interaction promotes a distinct environment for DMPG (anionic lipid)
- Peptide-induced clustering anionic lipids?

Conclusions

 Peptide-induced reorganization of bicellar mixtures appears to be facilitated by the presence of anionic lipid

- SP-B_{C-TERM}
 - Promotes ribbon-to-extended lamellar coalescence at a lower temperature when anionic lipids are present
 - Does not appear to involve separation of DMPG and DMPC
- Magainin 2
 - Appears to preferentially interact with anionic lipids
 - Spectra suggest separation of anionic lipids, possibly clustering

Acknowledgements

Supervisor: Michael R. Morrow

Group Members:

- Gagandeep Sandhu
- Suhad Sbeih
- Collin Knight

Collaborators:

- Valerie Booth
- Donna Jackman

