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Motivations
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Why is it interesting 7

QFT phases
e Infrared (IR) free

- With mass gap = Exponentially-decaying correlation functions
(e.g. Higgs phase)
- Without mass gap = Trivial power-law correlation functions
(e.g. Abelian Coulomb phase)
o IR interacting

- CFTs = Power-law correlation functions (e.g. non-Abelian
Coulomb phase)
- SFTs =7

Possible types of RG flows

@ Strong coupling

@ Weak coupling

- Fixed points (e.g. Banks-Zaks fixed point Banks, Zaks (1982))
- Recurrent behaviors (e.g. limit cycles or ergodjc behaviors)
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Preliminaries (d > 2)

@ Dilatation current Wess (1960)

- DH(x) = x"T,"(x) — V*(x)

- T,#(x) any symmetric EM tensor following from spacetime
nature of scale transformations

- V¥(x) local operator (virial current) contributing to scale
dimensions of fields

- Freedom in choice of T,#(x) compensated by freedom in
choice of V#(x)

e Scale invariance = T,"(x) = 9, V*(x)
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@ Conformal current Wess (1960)

- G0 = 1) T () = (031 M)V () + (9,0 v ) ()L (x)

- T,"(x) any symmetric EM tensor following from
spacetime nature of conformal transformations

- V’F(x) local operator corresponding to ambiguity in
choice of dilatation current

- LPP(x) local symmetric operator correcting position
dependence of scale factor

- (0av,)(x) scale factor (general linear function of x,,)

- Freedom in choice of T,"(x) compensated by freedom in
choice of V'#(x) and LP¥(x)

e Conformal invariance = T,"(x) = 9, V'*(x) = 0,0, L""(x)

o Conformal invariance = Existence of symmetric traceless
energy-momentum tensor Polchinski (1988)
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Scale without conformal invariance

Non-conformal scale-invariant QFTs Polchinski (1988)

e Scale invariance = T,"(x) = 9, V*(x)

Conformal invariance = T,/ (x) = 9,0, L""(x)

Scale without conformal invariance
= T,*(x) = 0,V*(x) where V#(x) # JV(x) + 0, L"*(x) with

“w

0" (x) =0

Constraints on possible virial current candidates
- Gauge invariant (spatial integral)
- Fixed d — 1 scale dimension in d spacetime dimensions

No suitable virial current = Scale invariance implies
conformal invariance (examples: ¢P in d = n— € for

(p,n) = (6,3),(4,4) and (3,6))
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Virial current candidates (d = 4)

Most general classically scale-invariant renormalizable theory in
d = 4 — € spacetime dimensions Jack, Osborn (1985)

L1
L=y Zagz B FA + 325,25 DyénD" b

L, 1 1,1 _
32"z} Dyt~ 325" 2 Dylyim
X ME(AZA)abcdﬁba(ﬁbﬁbc(ﬁd

a4

— 312 (yZ”)abatbityy — 312 (yZ” )52 it
® ¢,(x) real scalar fields

e ¥(x) Weyl fermions

o Af(x) gauge fields

@ Dimensional regularization with minimal subtraction
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Virial current candidates and new improved EM tensor

e Virial current V#(x) = QappaD*pp — P,-J-@Z_J,-i(}“@
- Qba = _Qab
- Pi=—Py
e New improved energy-momentum tensor [©,/(x)] Callan,
Coleman, Jackiw (1970)

- Finite and not renormalized (vanishing anomalous dimension)
- Anomalous trace Osborn (1989,1991) & Jack, Osborn (1990)

[0,/ (x)] Z%[FfVFAW] — 2 Babed[0a0p0cdd]

— 1 (Bujjloathiv)] + hc.) — (6 + T)F) - %A
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@ Anomalous trace

0,(3] = B'[O1(x)] — (34 T)F) - S-A

e Conserved dilatation current 9, D*(x) = 0 (up to EOMs)

BI — Ql = _(gQ)I

e Conserved conformal current 9,C,""(x) = 0 (up to EOMs)

B =0

= Both SFT (Q # 0) and CFT (Q = 0) can be treated
simultaneously
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Virial current and unitarity bounds

@ New improved energy-momentum tensor = Finite and not
renormalized Callan, Coleman, Jackiw (1970)

@ Operators related to EOMs = Finite and not renormalized
Politzer (1980) & Robertson (1991)

@ Virial current = Finite and not renormalized

- Unconserved current with scale dimension exactly 3

@ Unitarity bounds for conformal versus scale-invariant QFTs
Grinstein, Intriligator, Rothstein (2008)

@ Non-trivial virial current = Non-conformal scale-invariant
QFTs
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RG flows along scale-invariant trajectories

Scale-invariant solution (Aapcd; Yajij> 8a) = RG trajectory

= In(uo/p)  (RG time)

° (S\chd(tvga )\7y)7)73‘ij(t7g7 )\7)’)7 EA(tv &, )‘7}/)) also
scale-invariant solution

@ Q. and Pj; constant along RG trajectory

o Z,»(t) orthogonal and Z-j(t) unitary = Always non-vanishing
beta-functions along scale-invariant trajectory
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Scale invariance and recurrent behaviors

RG flows along scale-invariant trajectories = Recurrent behaviors !
Lorenz (1963,1964), Wilson (1971) & Kogut, Wilson (1974)

@ Virial current = Transformation in symmetry group of kinetic
terms (SO(Ns) x U(NE))

- Zap(t) and Zj(t) in SO(Ns) x U(NE)
- Qap antisymmetric and Pj; antihermitian = Purely imaginary
eigenvalues

= Periodic (limit cycle) or quasi-periodic (ergodicity)
scale-invariant trajectories
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Recurrent behaviors

Intuition from D#(x) = x” T,"(x) — V#(x)
@ RG flow = Generated by scale transformation (x” T,,"(x))

@ RG flow = Related to virial current through conservation of
dilatation current

@ Virial current = Generates internal transformation of the
fields

- Internal transformation in compact group SO(Ns) x U(NF)
= Rotate back to or close to identity

@ RG flow return back to or close to identity = Recurrent
behavior
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Why dilatation generators generate dilatations

Dilatation generators do not generate dilatations in
non-scale-invariant QFTs Coleman, Jackiw (1971)

@ Quantum anomalies at low orders

- Anomalous dimensions
= Possible to absorb into redefinition of scale dimensions of fields
Preserve scale invariance

@ Quantum anomalies at high orders

- Beta-functions
= Not possible to absorb
X Break scale invariance
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Why dilatation generators generate dilatations in scale-invariant
QFTs ?

@ Beta-functions on scale-invariant trajectories

- Both vertex correction and wavefunction renormalization
contributions

- Very specific form for vertex correction contribution

- Equivalent in form to wavefunction renormalization
contribution (redundant operators)

= Also possible to absorb into redefinition of scale dimensions of

fields
Preserve scale invariance !
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@ Beta-functions from vertex corrections and wavefunction
renormalizations (d = 4 spacetime dimensions)

_ dAabed
dt
*()\’Y/\)abcd + /\a’bcdra’a + )\ab’cdrb’b + )\abc’drc/c + Aabcd’ I_d/d
dy ..
Bay = = datlu = =Y )ati + Yar(iTara + yaliriTivi + Yaliir T
dga

Ba = Y = va8a (no sum)

Babcd

@ Beta-functions on scale-invariant trajectories

Babcd = _)\a’bcd Qa’a - /\ab’cd Qb’b - /\abc’d Qc’c - /\abcd’ Qd’d
Ba|ij = Y UQa’a yalJPl’l }/a|u"D'
Ba=0
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Ward identity for scale invariance

Callan-Symanzik equation for effective action Callan (1970) &
Symanzik (1970)

o 0

1)
| TTFO) M) =0

@ In non-scale-invariant QFTs

Anomalous dimensions
X Beta-functions

[I\/Iaa/l + / d*x ﬁ(x)dff(x)] Mf(x),g,M] =0

@ In scale-invariant QFTs

Anomalous dimensions
Beta-functions (redundant operators)
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Poincaré algebra augmented with dilatation charge

@ Beta-functions on scale-invariant trajectories

- Quantum-mechanical generation of scale dimensions
- Appropriate scale dimensions required by virial current
= Conserved dilatation current D#(x)

o Poincaré algebra with dilatation charge D = [ d3xD?(x)

[Muws Mpo] = =i(0upMuo — 0upMpuo + Mo Myup — 10 Myp)
[Muua Pp] = _i(nupPu - 771/pP/J,)
[Dv 'D#] = _iPH

o Algebra action on fields O (x)
My, O1()] =~ — %0 + E30)O4(x)
[P 01()] = —i9,04(x)
[D,0)(x)] = —i(x -0+ A)O;(x)
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@ New classical scale dimensions of fields due to virial current

[D, ¢a(x)] = —i(x - 0 + 1)¢a(x) — iQap®b(x)
[D, 9i(x)] = —i(x - 0+ 3)i(x) — iPya;(x)
- How do non-conformal scale-invariant QFTs know about new

scale dimensions 7
= Generated by beta-functions !

@ Quantum-mechanical scale dimensions of fields

Aab = 5ab + rab + Qab
Dj=36;+Tj+ Py
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c-theorem

c-theorem Barnes, Intriligator, Wecht, Wright (2004)

@ RG flow = Irreversible process (integrating out DOFs)

@ c(g) ~ measure of number of massless DOFs

@ c-theorem and implications for SFT

- (cir < cyv) Komargodski, Schwimmer (2011) & Luty,
Polchinski, Rattazzi (2012)
- (9 < 0) Osborn (1989,1991) & Jack, Osborn (1990)

- $tkoNgEEY (RG flows as gradient flows)
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Gradient flow

@ Gradient flow

- GY positive-definite metric
- Potential ¢(g) function of couplings

e Potential c(g) monotonically decreasing along RG trajectory
dc(g(t))
dt

- Recurrent behaviors (scale-invariant trajectories) < Gradient
flows (scale implies conformal invariance) Wallace, Zia (1975)

= —Gu(g)B'B? <0

= Another way to prove scale implies conformal invariance

- Different than proof for d = 2 unitarity interacting QFTs with
well-defined correlation functions Zamolodchikov (1986) &
Polchinski (1988)
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c-theorem and gradient flow at weak coupling

@ Weyl consistency conditions Osborn (1989,1991) & Jack, Osborn
(1990)

dc(g)

gl (out A’ = CED) 6000

dt

- Curved spacetime = Background metric with
spacetime-dependent couplings
= (Weak-coupling) RG flow recurrent behaviors forbidden at all
loops
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Local and global renormalized operators

Global renormalized operator O;(x) = 0L(x)/0g’

o Finite global insertion in Green functions =
—i0(...)/0g" = ([ dIxO(x)...)
e Infinite local insertion in Green functions = (O,(x)...)

Local renormalized operator [O;(x)] = 6.A/5g'(x)

o Finite local insertion in Green functions =
(010 ) = ((O1(x) = B} (x)) - - )
o Infinite current Ji'(x) = —(N;)ap02D ¢ + (M) 10ii5 9
- (Ni)ba = —(Ni)ap and (M) = —(()V’/)ij

0 y
- N = 2121 —~ and M, = ZIZI P
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Computations of new divergences

1 1

(Nc|ij)ab = T 16712¢ 2

(y;k|ij5bc - }//j‘,'j(sac) + h.c. + finite
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Finite contributions to EM tensor

Anomalous trace Osborn (1989,1991) & Jack, Osborn (1990)
- )
[0,/ (x)] = B'[01] = DulSap@sD" 85 — Riiic" ] = (5 + 7)f) - 52 A
fo = nG=Z3(g)f g = 1" (g' + L'(g))

A =(3—0)e— kig'92: ) Bl = —kigle — ki L'D + kyg70,L'D)
S=—kg'N" R=—kg'M"
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Ambiguities in RG functions

Relevant quantities Osborn (1989,1991) & Jack, Osborn (1990)

@ Square root of wavefunction renormalization V4
- Freedom Z2 — 7% = OZ3 with Z = 7iT7: 5 727070272
-0T0=1and O=1+% ., 9

€l

o Extra freedom with w = k;g'9,0()
Z%(l) N Z%(l) + oWn [V @ _ (go(l))’ Nl(l) N Nl(l) _ 8,0(1)
=iy —w B — B - (gw) S—>S+w
@ Invariant anomalous trace
0
[0,(x)] = (8" + (&5))[O1] = (6 + 7+ S)f) - SFA

= B'[O)] — ((5 + N)f) - %A
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Scale and conformal invariance

o “Correct” RG flow = B/ = 8/ + (g5)! = —(gQ)’
- SFTs (Q # 0) = limit cycles (B! = —(gQ)' # 0)
- CFTs (Q = 0) = fixed points (B! = 0)

o “Old" RG flow = g/ = —(g(S + Q))’

- SFTs (Q # 0) = fixed points (S = —Q) and limit cycles

(5#-Q)
- CFTs (Q = 0) = fixed points (S = 0) and limit cycles (S # 0)

= Systematic understanding of SFTs and CFTs through
“correct” RG flow (unless S vanishes identically)
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Computation of S

Slone-loop) — g(two-loop) — (9 dye to symmetry of contributions to N,

(167%)>Sap = 2tr(ya ¥ yaye ) Nvede + 2tr(ya e YaYaysye) — {a <> b} + h.c.

S # 0 = Examples of CFTs with S # 0 exist JFF, Grinstein, Stergiou
(2012)
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Generalized c-theorem

@ Weyl consistency conditions and local current conservation
Osborn (1989,1991) & Jack, Osborn (1990)

0 d t
(;ég;’) = (G/J+A[J) BJ = % = — BIGU BJ

- Curved spacetime = Background metric with
spacetime-dependent couplings
- Spin-one operator of dimension 3 = Background gauge fields
with gauge-dependent couplings
= (Weak-coupling) RG flow recurrent behaviors allowed at all
loops

@ Scale invariance implies conformal invariance JFF, Grinstein,
Stergiou (2012) & Luty, Polchinski, Rattazzi (2012)
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Features and future work

Features of SFTs and CFTs

@ Correct RG flow

- SFTs = Recurrent behaviors
- CFTs = Fixed points

@ Generalized c-theorem = Only CFTs allowed

= Scale invariance implies conformal invariance
- Unexpected CFTs with expected behaviors

Future work

@ Proof at strong coupling Farnsworth, Luty, Prelipina (2013)
@ 6d analysis Grinstein, Stergiou, Stone, Zhong (2014,2015)

Thank you !



	Motivations
	Scale and conformal invariance
	Preliminaries
	Scale invariance and recurrent behaviors

	Weyl consistency conditions
	c-theorem
	Scale invariance implies conformal invariance

	Discussion and conclusion
	Features and future work


