Jean-François Fortin

Département de Physique, de Génie Physique et d'Optique Université Laval, Québec, QC G1V 0A6, Canada

> June 15-June 19, 2015 2015 CAP Congress

mostly based on arXiv:1208.3674 [hep-th]

with Benjamín Grinstein and Andreas Stergiou

The big picture

Weyl consistency conditions c-theorem gradient flow

Why is it interesting?

QFT phases

- Infrared (IR) free
 - With mass gap \Rightarrow Exponentially-decaying correlation functions (e.g. Higgs phase)
 - Without mass gap ⇒ Trivial power-law correlation functions (e.g. Abelian Coulomb phase)
- IR interacting
 - CFTs \Rightarrow Power-law correlation functions (e.g. non-Abelian Coulomb phase)
 - SFTs \Rightarrow ?

Possible types of RG flows

- Strong coupling
- Weak coupling
 - Fixed points (e.g. Banks-Zaks fixed point Banks, Zaks (1982))
 - Recurrent behaviors (e.g. limit cycles or ergodic behaviors)

Outline

- Motivations
- Scale and conformal invariance
 - Preliminaries
 - Scale invariance and recurrent behaviors
- Weyl consistency conditions
 - c-theorem
 - Scale invariance implies conformal invariance
- Discussion and conclusion
 - Features and future work

Preliminaries (d > 2)

- Dilatation current Wess (1960)
 - $\mathcal{D}^{\mu}(x) = x^{\nu} T_{\nu}^{\ \mu}(x) V^{\mu}(x)$
 - $T_{
 u}^{\ \mu}(x)$ any symmetric EM tensor following from spacetime nature of scale transformations
 - $V^{\mu}(x)$ local operator (virial current) contributing to scale dimensions of fields
 - Freedom in choice of $T_{\nu}^{\ \mu}(x)$ compensated by freedom in choice of $V^{\mu}(x)$
- Scale invariance $\Rightarrow T_{\mu}^{\ \mu}(x) = \partial_{\mu}V^{\mu}(x)$

- Conformal current Wess (1960)
 - $\mathcal{C}_{\nu}{}^{\mu}(x) = v_{\nu}{}^{\lambda}(x) T_{\lambda}{}^{\mu}(x) (\partial_{\lambda} v_{\nu}{}^{\lambda})(x) V^{\prime \mu}(x) + (\partial_{\rho} \partial_{\lambda} v_{\nu}{}^{\lambda})(x) L^{\rho \mu}(x)$
 - $T_{\lambda}^{\mu}(x)$ any symmetric EM tensor following from spacetime nature of conformal transformations
 - $V'^{\mu}(x)$ local operator corresponding to ambiguity in choice of dilatation current
 - $L^{\rho\mu}(x)$ local symmetric operator correcting position dependence of scale factor
 - $(\partial_{\lambda} v_{\nu}^{\ \lambda})(x)$ scale factor (general linear function of x_{ν})
 - Freedom in choice of $T_\lambda^{\ \mu}(x)$ compensated by freedom in choice of $V'^\mu(x)$ and $L^{\rho\mu}(x)$
- Conformal invariance $\Rightarrow T_{\mu}{}^{\mu}(x) = \partial_{\mu}V'^{\mu}(x) = \partial_{\mu}\partial_{\nu}L^{\nu\mu}(x)$
- Conformal invariance ⇒ Existence of symmetric traceless energy-momentum tensor Polchinski (1988)

Scale without conformal invariance

Non-conformal scale-invariant QFTs Polchinski (1988)

- Scale invariance $\Rightarrow T_{\mu}{}^{\mu}(x) = \partial_{\mu}V^{\mu}(x)$
- Conformal invariance $\Rightarrow T_{\mu}^{\ \mu}(x) = \partial_{\mu}\partial_{\nu}L^{\nu\mu}(x)$
- Scale without conformal invariance

$$\Rightarrow T_{\mu}{}^{\mu}(x) = \partial_{\mu}V^{\mu}(x) \text{ where } V^{\mu}(x) \neq J^{\mu}(x) + \partial_{\nu}L^{\nu\mu}(x) \text{ with } \partial_{\mu}J^{\mu}(x) = 0$$

- Constraints on possible virial current candidates
 - Gauge invariant (spatial integral)
 - Fixed d-1 scale dimension in d spacetime dimensions
- No suitable virial current \Rightarrow Scale invariance implies conformal invariance (examples: ϕ^p in $d = n \epsilon$ for (p, n) = (6, 3), (4, 4) and (3, 6))

Virial current candidates (d = 4)

Most general classically scale-invariant renormalizable theory in $d=4-\epsilon$ spacetime dimensions Jack, Osborn (1985)

$$\mathcal{L} = -\mu^{-\epsilon} Z_{A} \frac{1}{4g_{A}^{2}} F_{\mu\nu}^{A} F^{A\mu\nu} + \frac{1}{2} Z_{ab}^{\frac{1}{2}} Z_{ac}^{\frac{1}{2}} D_{\mu} \phi_{b} D^{\mu} \phi_{c}$$

$$+ \frac{1}{2} Z_{ij}^{\frac{1}{2}*} Z_{ik}^{\frac{1}{2}} \bar{\psi}_{j} i \bar{\sigma}^{\mu} D_{\mu} \psi_{k} - \frac{1}{2} Z_{ij}^{\frac{1}{2}*} Z_{ik}^{\frac{1}{2}} D_{\mu} \bar{\psi}_{j} i \bar{\sigma}^{\mu} \psi_{k}$$

$$- \frac{1}{4!} \mu^{\epsilon} (\lambda Z^{\lambda})_{abcd} \phi_{a} \phi_{b} \phi_{c} \phi_{d}$$

$$- \frac{1}{2} \mu^{\frac{\epsilon}{2}} (y Z^{y})_{a|ij} \phi_{a} \psi_{i} \psi_{j} - \frac{1}{2} \mu^{\frac{\epsilon}{2}} (y Z^{y})_{a|ij}^{*} \phi_{a} \bar{\psi}_{i} \bar{\psi}_{j}$$

- $\phi_a(x)$ real scalar fields
- $\psi_i^{\alpha}(x)$ Weyl fermions
- $A_{\mu}^{A}(x)$ gauge fields
- Dimensional regularization with minimal subtraction

Virial current candidates and new improved EM tensor

- Virial current $V^{\mu}(x) = Q_{ab}\phi_a D^{\mu}\phi_b P_{ii}\bar{\psi}_i i\bar{\sigma}^{\mu}\psi_i$
 - $-Q_{h_2} = -Q_{2h_1}$
 - $-P_{ii}^* = -P_{ii}$
- New improved energy-momentum tensor $[\Theta_{\nu}^{\ \mu}(x)]$ Callan, Coleman, Jackiw (1970)
 - Finite and not renormalized (vanishing anomalous dimension)
 - Anomalous trace Osborn (1989,1991) & Jack, Osborn (1990)

$$\begin{split} [\Theta_{\mu}^{\mu}(x)] = & \frac{\mathsf{B}_A}{2g_A^3} [F_{\mu\nu}^A F^{A\mu\nu}] - \frac{1}{4!} \, \mathsf{B}_{abcd} [\phi_a \phi_b \phi_c \phi_d] \\ & - \frac{1}{2} \left(\mathsf{B}_{\mathsf{a}|ij} [\phi_a \psi_i \psi_j] + \mathsf{h.c.} \right) - \left((\delta + \Gamma) f \right) \cdot \frac{\delta}{\delta f} \mathcal{A} \end{split}$$

$$[\Theta_{\mu}^{\ \mu}(x)] = \mathsf{B}^I[\mathcal{O}_I(x)] - ((\delta + \Gamma)f) \cdot \frac{\delta}{\delta f} A$$

• Conserved dilatation current $\partial_{\mu}\mathcal{D}^{\mu}(x) = 0$ (up to EOMs)

$$\mathsf{B}^I = \mathcal{Q}^I \equiv -(gQ)^I$$

• Conserved conformal current $\partial_{\mu}C_{\nu}^{\ \mu}(x) = 0$ (up to EOMs)

$$B^I = 0$$

 \Rightarrow Both SFT ($Q \neq 0$) and CFT (Q = 0) can be treated simultaneously

Virial current and unitarity bounds

- New improved energy-momentum tensor ⇒ Finite and not renormalized Callan, Coleman, Jackiw (1970)
- Operators related to EOMs ⇒ Finite and not renormalized Politzer (1980) & Robertson (1991)
- Virial current ⇒ Finite and not renormalized
 - Unconserved current with scale dimension exactly 3
- Unitarity bounds for conformal versus scale-invariant QFTs Grinstein, Intriligator, Rothstein (2008)
- Non-trivial virial current ⇒ Non-conformal scale-invariant QFTs

RG flows along scale-invariant trajectories

Scale-invariant solution $(\lambda_{abcd}, y_{a|ij}, g_A) \Rightarrow RG$ trajectory

$$\begin{split} \bar{\lambda}_{abcd}(t) &= \widehat{Z}_{a'a}(t)\widehat{Z}_{b'b}(t)\widehat{Z}_{c'c}(t)\widehat{Z}_{d'd}(t)\lambda_{a'b'c'd'} \\ \bar{y}_{a|ij}(t) &= \widehat{Z}_{a'a}(t)\widehat{Z}_{i'i}(t)\widehat{Z}_{j'j}(t)y_{a'|i'j'} \\ \bar{g}_{A}(t) &= g_{A} \\ \widehat{Z}_{a'a}(t) &= \left(e^{Qt}\right)_{a'a} \end{split}$$

- $(\bar{\lambda}_{abcd}(t,g,\lambda,y), \bar{y}_{a|ij}(t,g,\lambda,y), \bar{g}_{A}(t,g,\lambda,y))$ also scale-invariant solution
- ullet Q_{ab} and P_{ij} constant along RG trajectory
- $\widehat{Z}_{ab}(t)$ orthogonal and $\widehat{Z}_{ij}(t)$ unitary \Rightarrow Always non-vanishing beta-functions along scale-invariant trajectory

RG flows along scale-invariant trajectories \Rightarrow Recurrent behaviors! Lorenz (1963,1964), Wilson (1971) & Kogut, Wilson (1974)

- Virial current ⇒ Transformation in symmetry group of kinetic terms $(SO(N_S) \times U(N_F))$
 - $\widehat{Z}_{ab}(t)$ and $\widehat{Z}_{ii}(t)$ in $SO(N_S) \times U(N_F)$
 - Q_{ab} antisymmetric and P_{ii} antihermitian \Rightarrow Purely imaginary eigenvalues
- ⇒ Periodic (limit cycle) or quasi-periodic (ergodicity) scale-invariant trajectories

Recurrent behaviors

Intuition from $\mathcal{D}^{\mu}(x) = x^{\nu} T_{\nu}^{\mu}(x) - V^{\mu}(x)$

- RG flow \Rightarrow Generated by scale transformation $(x^{\nu}T_{\nu}^{\mu}(x))$
- RG flow ⇒ Related to virial current through conservation of dilatation current
- Virial current ⇒ Generates internal transformation of the fields
 - Internal transformation in compact group $SO(N_S) \times U(N_F)$
 - ⇒ Rotate back to or close to identity
- RG flow return back to or close to identity ⇒ Recurrent behavior

Why dilatation generators generate dilatations

Dilatation generators do not generate dilatations in non-scale-invariant QFTs Coleman, Jackiw (1971)

- Quantum anomalies at low orders
 - Anomalous dimensions
 - ⇒ Possible to absorb into redefinition of scale dimensions of fields
 - Preserve scale invariance
- Quantum anomalies at high orders
 - Beta-functions
 - ⇒ Not possible to absorb
 - Break scale invariance

Why dilatation generators generate dilatations in scale-invariant QFTs ?

- Beta-functions on scale-invariant trajectories
 - Both vertex correction and wavefunction renormalization contributions
 - Very specific form for vertex correction contribution
 - Equivalent in form to wavefunction renormalization contribution (redundant operators)
 - ⇒ Also possible to absorb into redefinition of scale dimensions of fields
 - ✓ Preserve scale invariance!

• Beta-functions from vertex corrections and wavefunction renormalizations (d = 4 spacetime dimensions)

$$\begin{split} \mathsf{B}_{abcd} &= -\frac{d\lambda_{abcd}}{dt} \\ &= -(\lambda\gamma^{\lambda})_{abcd} + \lambda_{a'bcd} \Gamma_{a'a} + \lambda_{ab'cd} \Gamma_{b'b} + \lambda_{abc'd} \Gamma_{c'c} + \lambda_{abcd'} \Gamma_{d'd} \\ \mathsf{B}_{a|ij} &= -\frac{dy_{a|ij}}{dt} = -(y\gamma^{y})_{a|ij} + y_{a'|ij} \Gamma_{a'a} + y_{a|i'j} \Gamma_{i'i} + y_{a|ij'} \Gamma_{j'j} \\ \mathsf{B}_{A} &= -\frac{dg_{A}}{dt} = \gamma_{A} g_{A} \quad \text{(no sum)} \end{split}$$

Beta-functions on scale-invariant trajectories

$$\begin{split} \mathsf{B}_{abcd} &= -\lambda_{a'bcd} Q_{a'a} - \lambda_{ab'cd} Q_{b'b} - \lambda_{abc'd} Q_{c'c} - \lambda_{abcd'} Q_{d'd} \\ \mathsf{B}_{a|ij} &= -y_{a'|ij} Q_{a'a} - y_{a|i'j} P_{i'i} - y_{a|ij'} P_{j'j} \\ \mathsf{B}_A &= 0 \end{split}$$

Ward identity for scale invariance

Callan-Symanzik equation for effective action Callan (1970) & Symanzik (1970)

$$\left[M\frac{\partial}{\partial M} + \mathbf{B}^{I}\frac{\partial}{\partial g^{I}} + \Gamma_{J}^{I}\int d^{4}x \, f_{I}(x)\frac{\delta}{\delta f_{J}(x)}\right]\Gamma[f(x),g,M] = 0$$

- In non-scale-invariant QFTs
 - Anomalous dimensions
 - Beta-functions

$$\left[M\frac{\partial}{\partial M} + (\Gamma + Q)\int_{J}^{J}\int_{J}^{J}d^{4}x\,f_{I}(x)\frac{\delta}{\delta f_{J}(x)}\right]\Gamma[f(x),g,M] = 0$$

- In scale-invariant QFTs
 - Anomalous dimensions
 - Beta-functions (redundant operators)

Poincaré algebra augmented with dilatation charge

- Beta-functions on scale-invariant trajectories
 - Quantum-mechanical generation of scale dimensions
 - Appropriate scale dimensions required by virial current
 - \Rightarrow Conserved dilatation current $\mathcal{D}^{\mu}(x)$
- Poincaré algebra with dilatation charge $D = \int d^3x \, \mathcal{D}^0(x)$

$$egin{aligned} [M_{\mu
u},M_{
ho\sigma}] &= -i(\eta_{\mu
ho}M_{
u\sigma}-\eta_{
u
ho}M_{\mu\sigma}+\eta_{
u\sigma}M_{\mu
ho}-\eta_{\mu\sigma}M_{
u
ho}) \ [M_{\mu
u},P_{
ho}] &= -i(\eta_{\mu
ho}P_{
u}-\eta_{
u
ho}P_{\mu}) \ [D,P_{\mu}] &= -iP_{\mu} \end{aligned}$$

• Algebra action on fields $\mathcal{O}_I(x)$

$$[M_{\mu\nu}, \mathcal{O}_I(x)] = -i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu} + \Sigma_{\mu\nu})\mathcal{O}_I(x)$$
$$[P_{\mu}, \mathcal{O}_I(x)] = -i\partial_{\mu}\mathcal{O}_I(x)$$
$$[D, \mathcal{O}_I(x)] = -i(x \cdot \partial + \Delta)\mathcal{O}_I(x)$$

Motivations

$$[D, \phi_a(x)] = -i(x \cdot \partial + 1)\phi_a(x) - iQ_{ab}\phi_b(x)$$
$$[D, \psi_i(x)] = -i(x \cdot \partial + \frac{3}{2})\psi_i(x) - iP_{ij}\psi_j(x)$$

- How do non-conformal scale-invariant QFTs know about new scale dimensions?
- ⇒ Generated by beta-functions!
- Quantum-mechanical scale dimensions of fields

$$\Delta_{ab} = \delta_{ab} + \Gamma_{ab} + Q_{ab}$$
$$\Delta_{ij} = \frac{3}{2}\delta_{ij} + \Gamma_{ij} + P_{ij}$$

c-theorem

c-theorem Barnes, Intriligator, Wecht, Wright (2004)

- RG flow ⇒ Irreversible process (integrating out DOFs)
- $c(g) \sim$ measure of number of massless DOFs
- c-theorem and implications for SFT
 - weak $(c_{IR} < c_{UV})$ Komargodski, Schwimmer (2011) & Luty, Polchinski, Rattazzi (2012)
 - stronger $(\frac{dc}{dt} \le 0)$ Osborn (1989,1991) & Jack, Osborn (1990)
 - strongest/ (RG flows as gradient flows)

Gradient flow

$$\mathsf{B}^I(g) = -rac{dg^I}{dt} = G^{IJ}(g)rac{\partial c(g)}{\partial g^J}$$

- *G^{IJ}* positive-definite metric
- Potential c(g) function of couplings
- ullet Potential c(g) monotonically decreasing along RG trajectory

$$\frac{dc(g(t))}{dt} = -G_{IJ}(g) B^{I} B^{J} \leq 0$$

- ⇒ Another way to prove scale implies conformal invariance
 - Different than proof for d=2 unitarity interacting QFTs with well-defined correlation functions Zamolodchikov (1986) & Polchinski (1988)

c-theorem and gradient flow at weak coupling

Weyl consistency conditions Osborn (1989,1991) & Jack, Osborn (1990)

$$\frac{\partial c(g)}{\partial g^{I}} = (G_{IJ} + A_{IJ})\beta^{J} \Rightarrow \frac{dc(g(t))}{dt} = -\beta^{I}G_{IJ}(g)\beta^{J}$$

- Curved spacetime ⇒ Background metric with spacetime-dependent couplings
- \Rightarrow (Weak-coupling) RG flow recurrent behaviors forbidden at all loops

Local and global renormalized operators

Global renormalized operator $\mathcal{O}_I(x) = \partial \mathcal{L}(x)/\partial g^I$

- Finite global insertion in Green functions \Rightarrow $-i\partial\langle\ldots\rangle/\partial g^I=\langle\int d^dx\,\mathcal{O}_I(x)\ldots\rangle$
- Infinite local insertion in Green functions $\Rightarrow \langle \mathcal{O}_I(x) \dots \rangle$

Local renormalized operator $[\mathcal{O}_I(x)] = \delta \mathcal{A}/\delta g^I(x)$

- Finite local insertion in Green functions \Rightarrow $\langle [\mathcal{O}_I(x)]... \rangle = \langle (\mathcal{O}_I(x) \partial_\mu J_I^\mu(x))... \rangle$
- Infinite current $J_I^{\mu}(x) = -(N_I)_{ab}\phi_a D^{\mu}\phi_b + (M_I)_{ij}\bar{\psi}_i i\bar{\sigma}^{\mu}\psi_j$ - $(N_I)_{ba} = -(N_I)_{ab}$ and $(M_I)_{ii}^* = -(M_I)_{ij}$
 - $N_I = \sum_{i \geq 1} rac{N_I^{(i)}}{\epsilon^i}$ and $M_I = \sum_{i \geq 1} rac{M_I^{(i)}}{\epsilon^i}$

Computations of new divergences

 $(N_{c|ij})_{ab} = -\frac{1}{16\pi^2\epsilon} \frac{1}{2} (y_{a|ij}^* \delta_{bc} - y_{b|ij}^* \delta_{ac}) + \text{h.c.} + \text{finite}$

Finite contributions to EM tensor

Anomalous trace Osborn (1989,1991) & Jack, Osborn (1990)

$$[\Theta_{\mu}{}^{\mu}(x)] = \beta^{I}[\mathcal{O}_{I}] - D_{\mu}[S_{ab}\phi_{a}D^{\mu}\phi_{b} - R_{ij}\bar{\psi}_{i}i\bar{\sigma}^{\mu}\psi_{j}] - ((\delta + \gamma)f) \cdot \frac{\delta}{\delta f}\mathcal{A}$$

$$f_{0} = \mu^{(\frac{1}{2} - \delta)\epsilon} Z^{\frac{1}{2}}(g) f \qquad g'_{0} = \mu^{k_{I}\epsilon}(g^{I} + L^{I}(g))$$

$$\hat{\gamma} = (\frac{1}{2} - \delta)\epsilon - k_{I}g^{I}\partial_{I}Z^{\frac{1}{2}(1)} \qquad \hat{\beta}^{I} = -k_{I}g^{I}\epsilon - k_{I}L^{I(1)} + k_{J}g^{J}\partial_{J}L^{I(1)}$$

$$S = -k_{I}g^{I}N_{I}^{(1)} \qquad R = -k_{I}g^{I}M_{I}^{(1)}$$

Ambiguities in RG functions

Relevant quantities Osborn (1989,1991) & Jack, Osborn (1990)

- Square root of wavefunction renormalization $Z^{\frac{1}{2}}$
 - Freedom $Z^{\frac{1}{2}} o ilde{Z}^{\frac{1}{2}} = OZ^{\frac{1}{2}}$ with $Z = Z^{\frac{1}{2}T}Z^{\frac{1}{2}} o Z^{\frac{1}{2}T}O^TOZ^{\frac{1}{2}}$
 - $O^TO=1$ and $O=1+\sum_{i\geq 1}rac{O^{(i)}}{\epsilon^i}$
- Extra freedom with $\omega = k_I g^I \partial_I O^{(1)}$

$$Z^{\frac{1}{2}(1)} \to Z^{\frac{1}{2}(1)} + O^{(1)} \quad L'^{(1)} \to L'^{(1)} - (gO^{(1)})' \quad N_I^{(1)} \to N_I^{(1)} - \partial_I O^{(1)}$$

$$\hat{\gamma} \to \hat{\gamma} - \omega \qquad \qquad \hat{\beta}^I \to \hat{\beta}^I - (g\omega)^I \qquad S \to S + \omega$$

Invariant anomalous trace

$$[\Theta_{\mu}{}^{\mu}(x)] = (\beta^{I} + (gS)^{I})[\mathcal{O}_{I}] - ((\delta + \gamma + S)f) \cdot \frac{\delta}{\delta f} \mathcal{A}$$
$$= \mathsf{B}^{I}[\mathcal{O}_{I}] - ((\delta + \Gamma)f) \cdot \frac{\delta}{\delta f} \mathcal{A}$$

Scale and conformal invariance

- "Correct" RG flow \Rightarrow B^I = β ^I + (gS)^I = -(gQ)^I
 - SFTs $(Q \neq 0) \Rightarrow$ limit cycles $(B^I = -(gQ)^I \neq 0)$
 - CFTs $(Q = 0) \Rightarrow$ fixed points $(B^I = 0)$
- "Old" RG flow $\Rightarrow \beta^I = -(g(S+Q))^I$
 - SFTs $(Q \neq 0)$ \Rightarrow fixed points (S = -Q) and limit cycles $(S \neq -Q)$
 - CFTs (Q=0) \Rightarrow fixed points (S=0) and limit cycles (S
 eq 0)
- ⇒ Systematic understanding of SFTs and CFTs through "correct" RG flow (unless *S* vanishes identically)

Computation of S

 $S^{(\text{one-loop})} = S^{(\text{two-loop})} = 0$ due to symmetry of contributions to N_I

$$(16\pi^2)^3 S_{ab} = \tfrac{5}{8} \text{tr} (y_a \, y_c^* \, y_d \, y_e^*) \lambda_{bcde} + \tfrac{3}{8} \text{tr} (y_a \, y_c^* \, y_d \, y_d^* \, y_b \, y_c^*) - \{ a \leftrightarrow b \} + \text{h.c.}$$

 $S \neq 0 \Rightarrow$ Examples of CFTs with $S \neq 0$ exist JFF, Grinstein, Stergiou (2012)

Generalized c-theorem

 Weyl consistency conditions and local current conservation Osborn (1989,1991) & Jack, Osborn (1990)

$$\frac{\partial c(g)}{\partial g^{I}} = (G_{IJ} + A_{IJ}) B^{J} \Rightarrow \frac{dc(g(t))}{dt} = -B^{I}G_{IJ} B^{J}$$

- Curved spacetime ⇒ Background metric with spacetime-dependent couplings
- Spin-one operator of dimension 3 ⇒ Background gauge fields with gauge-dependent couplings
- ⇒ (Weak-coupling) RG flow recurrent behaviors allowed at all loops
- Scale invariance implies conformal invariance JFF, Grinstein, Stergiou (2012) & Luty, Polchinski, Rattazzi (2012)

Features and future work

Features of SFTs and CFTs

- Correct RG flow
 - SFTs ⇒ Recurrent behaviors
 - CFTs ⇒ Fixed points
- Generalized c-theorem \Rightarrow Only CFTs allowed
 - ⇒ Scale invariance implies conformal invariance
 - Unexpected CFTs with expected behaviors

Future work

- Proof at strong coupling Farnsworth, Luty, Prelipina (2013)
- 6d analysis Grinstein, Stergiou, Stone, Zhong (2014,2015)

Thank you!

