

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab Initio calculations of Nuclear Structure and Reactions

2015 CAP Congress Edmonton, Alberta June 13–19, 2015

Francesco Raimondi | TRIUMF Petr Navratil, Jeremy Dohet Eraly, Angelo Calci | TRIUMF Sofia Quaglioni, Carolina Romero-Redondo | LLNL Guillaume Hupin | CNRS

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

RIUMF Our goal is to develop a fundamental theory for the description of structure and dynamics of light nuclei

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

- First principles for Nuclear Physics: QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

From QCD to nuclei

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

From QCD to nuclei

WTRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- Bound & scattering states, reactions
- Cluster dynamics, long-range correlations

WTRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- Bound & scattering states, reactions
- Cluster dynamics, long-range correlations

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

NCSMC

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential:

Convergence

Differential p-⁴He cross section with NN+3N potentials

Structure of ⁹Be

⁹Be is a stable nucleus ... but all its excited states unbound A proper description requires to include effects of continuum

The lowest threshold: $n^{-8}Be(n-\alpha-\alpha)$

Optimal description: Square-integrable ⁹Be basis + n-⁸Be clusters

NCSMC with chiral NN+3N: Structure of ⁹Be

NN NN+3N Expt. NN+3N NN

⁹Be is a stable nucleus ... but all its excited states unbound A proper description requires to include effects of continuum

Three-nucleon interaction *and* continuum improve agreement with experiment for negative parity states

Continuum crucial for the description of positive-parity states

PHYSICAL REVIEW C 91, 021301(R) (2015)

Continuum and three-nucleon force effects on ⁹Be energy levels

Joachim Langhammer,^{1,*} Petr Navrátil,^{2,†} Sofia Quaglioni,³ Guillaume Hupin,^{3,‡} Angelo Calci,^{1,2} and Robert Roth^{1,§}

NCSM/RGM calculations of transfer reactions

$$\int dr \ r^{2} \left(\left\langle \begin{array}{c} \mathbf{r}^{\prime} \mathbf{a} \\ \mathbf{n} \end{array} \right| \hat{A}_{1}(H-E) \hat{A}_{1} \right| \mathbf{a} \\ \mathbf{a} \\ \mathbf{n} \end{array} \right) \left\langle \begin{array}{c} \mathbf{r}^{\prime} \mathbf{a} \\ \mathbf{n} \end{array} \right| \hat{A}_{1}(H-E) \hat{A}_{2} \\ \mathbf{a} \\ \mathbf{n} \\ \mathbf{n} \end{array} \right| \hat{A}_{1}(H-E) \hat{A}_{2} \\ \mathbf{a} \\ \mathbf{n} \\ \mathbf{a} \\ \mathbf{n} \\ \mathbf{$$

Straightforward to couple different mass partitions in the NCSM/RGM formalism

Applications to (d,p) and (d,n) reactions Example: ³He(d,p)⁴He

 $S(E) = E\sigma(E) \exp[2\pi\eta(E)]$ $\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$

Ab Initio Many-Body Calculations of the ${}^{3}H(d, n){}^{4}He$ and ${}^{3}He(d, p){}^{4}He$ Fusion Reactions

Petr Navrátil^{1,2} and Sofia Quaglioni²

SRG-N³LO (Λ=1.45 fm⁻¹) NN potential

- Position of the resonance matches experiment

S-factor narrower than the data

Resonance in the $d^{-3}H^{4}S_{1/2}$ partial wave

 $n-^{4}$ He $^{2}D_{3/2}$ decreasing, does not cross 90 degrees

TRIUMF (A-2) (A-2)

³H(*d*,*n*)⁴He fusion with chiral NN+3N

- Towards first ab initio calculation of ³H(d,n)⁴He fusion with 3N forces
 - N_{max} = 9 model space
 - n+⁴He & d+³H continuum channels
 - Up to 14 ⁵He states
 - Only g.s. of ⁴He and ³H: effect of target excitation described by ⁵He states
 - 3-body dynamics approximated above deuteron breakup

RIUMF

Spin-parity assignment of 0.78 MeV resonance of ⁹Be

Low peak in the experimental total cross section: E(5/2)~0.78 MeV above the threshold (Uncertain spin-parity assignment)

Calibration reaction for astrophysical process: $^{7}Li(d,p)^{8}Li$ as target calibration for $^{7}Be(p,\gamma)^{8}B$ (Solar abundance problem)

Possible mechanism of destruction of ⁷Li in the context of baryon-inhomogeneus models of the primordial nucleosynthesis (Primordial Lithium abundance problem)

⁷Li(*d*,p)⁸Li scattering results (NCSM-RGM)

Not-included channels: (1)⁸Be, n (2) ⁶Li, t

NCSM-RGM calculations with SRG-evolved (λ =2.02 fm⁻¹) chiral N³LO NN potentials 4 eigenstates of ⁸Li, 2 eigenstates of ⁷Li and 5 pseudostates of deuteron N_{max}=8, hΩ=20 MeV

Impact of different partial waves (NCSM-RGM)

⁷Li(*d*,p)⁸Li cross section

- Position of the first resonant peak slightly overestimated
- Increasing trend up to deuteron break-up fairly well reproduced (contribution from 3/2⁺ partial wave)
- Double-peak structure at low energy not resolved

Capture reactions important for astrophysics

TRIUMF 7Be

⁷Be(*p*,γ)⁸B radiative capture

- NCSM/RGM calculation of ⁷Be(p,γ)⁸B radiative capture
 - Be states 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
 - Soft NN potential (SRG-N³LO with Λ = 1.86 fm⁻¹)

7.21 6.73

4.57

³He-⁴He and ³H-⁴He scattering

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

In progress J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

Conclusions and Outlook

- Ab initio calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters (${}^{6}\text{He} \sim {}^{4}\text{He}+n+n$): NCSMC in progress

Ongoing projects:

- Transfer reactions
- Applications to capture reactions important for astrophysics
- Bremsstrahlung

Outlook

TRIUMF

- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He