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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the

0 15 30 45 60 75
ϕ
p
 [deg]

-10

-5

0

5

10

∆
 [

%
]

(b)
E

α
= 9.5 MeV

E
α
= 6.0 MeV

E
α
= 3.2 MeV

FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized

NCSM/RGM 
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.

DOI: 10.1103/PhysRevC.90.061601 PACS number(s): 21.60.De, 24.10.Cn, 25.40.Cm, 27.10.+h

Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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5

Comparing the NCSM and NCSMC results for negative
parity at fixed Nmax, we find for all states significant contri-
butions from the additional continuum degrees of freedom ac-
counted for in the NCSMC. The sole exception is the 7

2
� state,

where the e↵ects stay below 0.5 MeV. The NCSMC reduces
the energy di↵erences to the n-8Be threshold compared to the
NCSM for all states and for all Nmax, respectively. Concerning
the dependence on the model-space size for NCSMC, we find
only small e↵ects from increasing Nmax from 6 to 12, which
are slightly larger for the higher-excited states but remain well
below 0.5 MeV. Hence, the NCSMC calculations are well con-
verged, as already observed for the eigenphase shifts in Fig. 2.
This is di↵erent for the NCSM energies, which show signif-
icantly larger changes hinting at less converged calculations.
This is of course expected, because all excited states of 9Be
are resonances and the NCSM basis of A-body HO Slater de-
terminants is not designed for a proper description of contin-
uum states. Altogether, the NCSMC generally improves the
agreement with experiment, and, in particular, and we find
excellent agreement for the 1

2
� and second 5

2
� resonances at

Nmax = 12. Note that also the energy of the bound 3
2
� ground

state is lowered by about 0.5 MeV due to continuum contribu-
tions and the agreement with experiment is improved.

The behavior of the positive-parity states of 9Be [Fig. 4(b)]
is similar: we find even more dramatic e↵ects due to the con-
tinuum degrees of freedom as evident from comparing the en-
ergies for fixed Nmax between the two approaches. Again, the
NCSMC reduces all energy di↵erences relative to the n-8Be
threshold compared to the NCSM, leading to an improved
agreement with experiment. The agreement is particularly
striking for the S -wave dominated 1

2
+ state, whose energy at

Nmax = 7 is shifted caused by the continuum degrees of free-
dom by about 5 MeV right on top of its experimental posi-
tion slightly above threshold, and remains practically constant
when we increase the model-space size further to Nmax = 11 in
the NCSMC. Also the remaining NCSMC energies are much
less a↵ected by increasing Nmax from 7 to 11 than the NCSM
energies, which exhibit significant changes. We find the 3

2
+

resonance dominated by the 4S 3
2

partial wave in good agree-
ment with experiment, while the discrepancies remain larger
for the 5

2
+ and 9

2
+ resonances. Finally, we note that contri-

butions from the broad 4+ state of 8Be might improve the 9
2
+

resonance of 9Be.
We add a comment on excitation energies that can be read

o↵ Fig. 4 by the energy di↵erences to the ground-state. The
excitation energy of the 5

2
� resonance and similarly all exci-

tation energies of the positive-parity states relative to the 1
2
+

state are in good agreement with experiment already at the
level of NCSM calculations. Hence, the main issue of the
NCSM is to produce the correct threshold energy.

In Fig. 5 we study the e↵ects of the initial chiral 3N inter-
action on the 9Be energy levels. Therefore, we compare the
spectrum to the one for the NN+3N-induced Hamiltonian in-
cluding the SRG-induced 3N interactions only, again for neg-
ative parity at Nmax = 12 and positive parity at Nmax = 11 in
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FIG. 5: (color online) Negative (a) and positive (b) parity spectrum
of 9Be relative to the n-8Be threshold at Nmax = 12 and 11, respec-
tively. Shown are NCSM (first two columns) and NCSMC (last two
columns) results compared to experiment [5]. First and last columns
contain the energies for the NN+3N-induced and the second and
fourth column for the NN+3N-full Hamiltonian, respectively. Re-
maining parameters identical to Fig. 4.

panels (a) and (b), respectively. Each panel shows in the first
column the NCSM results for the NN+3N-induced Hamilto-
nian and in the second column for the NN+3N-full Hamilto-
nian. The two last columns cover the NCSMC energies for
which the Hamiltonians are reversed (see column labels), and
the shaded area denotes the extracted widths. Again, we in-
clude experimental energies and widths in the middle.

For negative parity, all states, except the first 5
2
� resonance,

are sensitive to the inclusion of the initial chiral 3N interac-
tion with e↵ects of roughly similar size for both, the NCSM
and the NCSMC: the inclusion of the chiral 3N interaction in-
creases the resonance energies relative to the threshold. The
NCSM energy di↵erences for the NN+3N-induced Hamilto-
nian are typically close to or above the experimental energies,

NN NN+3N Expt. NN+3N NN 
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Continuum and three-nucleon force effects on 9Be energy levels
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We extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon
(3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects
of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction
observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the
9Be system for which all excited states lie above the n-8Be threshold. For all energy levels, the inclusion of
the continuum significantly improves the agreement with experiment, which was an issue in standard no-core
shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable
statements about the quality of the adopted 3N interaction from chiral effective field theory. In particular, we find
the 1

2
+

resonance energy, which is of astrophysical interest, in good agreement with experiment.

DOI: 10.1103/PhysRevC.91.021301 PACS number(s): 21.60.De, 21.10.−k, 24.10.−i, 27.20.+n

I. INTRODUCTION

In recent years the inclusion of three-nucleon (3N) interac-
tions into different ab initio approaches for nuclear structure
calculations was challenging but successfully completed with
a variety of interesting applications [1–16]. However, beyond
the few-body domain, the inclusion of 3N interactions in
ab initio studies of continuum effects in weakly bound systems
or nuclear reactions have been completed for the five-nucleon
system only, e.g., within the Green’s function Monte Carlo
(GFMC) approach [17] and the no-core shell model combined
with the resonating group method (NCSM/RGM) [18,19]. To
arrive at a more efficient unified ab initio theory applicable
to nuclear structure and reactions on equal footing, the
NCSM/RGM approach was recently generalized to the no-core
shell model with continuum (NCSMC) [20,21]. In Ref. [22],
the NCSMC was applied to p-4He scattering for the first time
including 3N interactions using an algorithm restricted to A=3
and A = 4 target nuclei. In this communication, we extend the
NCSMC formalism to include 3N interactions in a general
framework applicable to arbitrary p- and lower-sd shell target
nuclei. This is a major step towards a refined nuclear structure
and reaction theory that allows ab initio studies of observables
affected by continuum degrees of freedom starting from the
best Hamiltonians currently available. This is vital to provide
robust quantum chromodynamics (QCD)-based predictions
starting from chiral effective field theory interactions, e.g.,
for light exotic nuclei.

As a first application, we study the effects of the continuum
and of the 3N interaction on the energy levels of the 9Be
nucleus. This system is interesting because only its ground

*joachim.langhammer@physik.tu-darmstadt.de
†navratil@triumf.ca
‡Present address: Department of Physics, University of Notre Dame,

Notre Dame, IN 46556, USA.
§robert.roth@physik.tu-darmstadt.de

state is bound, while all excited states are unstable and
subject to neutron emission as the n-8Be threshold energy
is located experimentally at 1.665 MeV [23], being the lowest
neutron threshold of all stable nuclei. Therefore, it is appealing
to study the impact of the continuum on the excited-state
resonances with particular focus on the effects of the chiral 3N
interactions. Earlier studies of these energy levels within the
NCSM showed problems with the model-space convergence,
and, in particular the positive-parity states were found too high
in excitation energy compared to experiment [24,25]. Also the
splitting between the lowest 5/2− and 1/2− states is found
overestimated in no-core shell model (NCSM) calculations
using the INOY interaction model that includes 3N effects [24].
Moreover, GFMC calculations [26] show strong sensitivity of
the splitting with respect to 3N interactions. As including the
3N effects appeared to shift the splitting away from the ex-
periment, these studies seemed to highlight deficiencies of 3N
force models. Furthermore, 9Be is interesting for astrophysics,
because it provides seed material for the production of 12C in
the explosive nucleosynthesis of core-collapse supernovae via
the (ααn)9Be(αn)12C reaction, an alternative to the triple-α
reaction [25,27,28] bridging the A = 8 instability gap and
triggering the r process. In particular, the description of the
first 1

2
+

state of 9Be slightly above threshold poses a long
standing problem [25,27,29], relevant for the cross sections
and reaction rates.

II. THE NO-CORE SHELL MODEL WITH CONTINUUM
AND 3N FORCES

To arrive at the ab initio description of the 9Be nucleus
we generalize the NCSMC [20,21] to include 3N interactions.
In the following we highlight the quantities affected by the
inclusion of 3N interactions, while we refer to Ref. [21] for
details about the general formalism and the implementation
of the NCSMC. In the NCSMC the eigenstates of the A-body

0556-2813/2015/91(2)/021301(7) 021301-1 ©2015 American Physical Society



 
Deuterium-Tritium fusion 

NIF 

ITER 

Resonance at Ecm =48 keV (Ed=105 keV) 
in the J=3/2+ channel 
Cross section at the peak: 4.88 b 
 
17.64 MeV energy released: 
14.1 MeV neutron and 3.5 MeV alpha 



 NCSM/RGM calculations of transfer reactions  

10 100 1000
E [keV]

0

5

10

15

20

S-
fa

ct
or

 [M
eV

 b
]

Al01
Al01
Sch89
Co05
Kr87
d(gs)
d(gs)+d*
d(gs)+3d*
d(gs)+5d*
d(gs)+7d*

d+3He → p+4He

10 100 1000
Ekin [keV]

0

5

10

15

20

S-
fa

ct
or

 [M
eV

 b
]

Bo52
Kr87
Sch89
Ge99
Al01
Al01
Co05
NCSM/RGM

d+3He → p+4HeStraightforward to couple different mass 
partitions in the NCSM/RGM formalism  

 
Applications to (d,p) and (d,n) reactions 

Example: 3He(d,p)4He 

Ab InitioMany-Body Calculations of the 3Hðd; nÞ4He and 3Heðd; pÞ4He Fusion Reactions
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We apply the ab initio no-core shell model combined with the resonating-group method approach to

calculate the cross sections of the 3Hðd; nÞ4He and 3Heðd; pÞ4He fusion reactions. These are important

reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a

selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon

data, we performed many-body calculations that predict the S factor of both reactions. Virtual three-body

breakup effects are obtained by including excited pseudostates of the deuteron in the calculation. Our

results are in satisfactory agreement with experimental data and pave the way for microscopic inves-

tigations of polarization and electron-screening effects, of the 3Hðd;!nÞ4He bremsstrahlung and other

reactions relevant to fusion research.
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The 3Hðd; nÞ4He and 3Heðd; pÞ4He reactions are leading
processes in the primordial formation of the very light
elements (mass number, A # 7), affecting the predictions
of big bang nucleosynthesis for light nucleus abundances
[1]. With its low activation energy and high yield,
3Hðd; nÞ4He is also the easiest reaction to achieve on
Earth, and is pursued by research facilities directed toward
developing fusion power by either magnetic (e.g., ITER
[2]) or inertial (e.g., NIF [3]) confinement. The cross
section for the dþ 3H fusion is well known experimen-
tally, while more uncertain [4] is the situation for the
branch of this reaction, 3Hðd;!nÞ4He, that is being con-
sidered as a possible plasma diagnostic in modern fusion
experiments [5]. Larger uncertainties also dominate the
3Heðd; pÞ4He reaction that is known for presenting consid-
erable electron-screening effects at energies accessible by
beam-target experiments. Here, the electrons which are
bound to the target (usually a neutral atom or molecule)
lead to enhanced values (increasingly with decreasing
energy) for the reaction rate, effectively preventing direct
access to the astrophysically relevant bare-nucleus cross
section. Consensus on the physics mechanism behind this
enhancement has not been reached yet [6], largely because
of the difficulty of determining the absolute value of the
bare cross section. Past theoretical investigations of these
fusion reactions include various R-matrix analyses of
experimental data at higher energies [7–10] as well as
microscopic calculations with phenomenological interac-
tions [11,12]. However, in view of remaining experimental
challenges (some of which are described above) and the
large role played by theory in extracting the astrophysi-
cally important information, it would be highly desirable
to achieve a microscopic description of the 3Hðd; nÞ4He
and 3Heðd; pÞ4He fusion reactions that encompasses
the dynamic of all five nucleons and is based on the

fundamental underlying physics: the realistic interactions
among nucleons and the structure of the fusing nuclei.
In this Letter, we present the first ab initio many-body

calculation of the 3Hðd; nÞ4He and 3Heðd; pÞ4He fusion
reactions starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
The present calculations are performed in the framework of
the ab initio no-core shell model combined with the
resonating-group method (NCSM/RGM) [13–15], a uni-
fied approach to bound and scattering states of light nuclei.
We use, in particular, the orthonormalized many-body
wave functions (" being the channel index)

j!J#Ti ¼
X

"

Z
drr2Â"j"J#T

"r i ½N
'1=2$("ðrÞ

r
; (1)

with an intercluster antisymmetrizer for the (A' a, a)

partition Â", center-of-mass separation ~rA'a;a, and
binary-cluster channel states

j"J#T
"r i ¼ ½ðjA' a%1I

#1
1 T1ija%2I

#2
2 T2iÞðsTÞ

) Y‘ðr̂A'a;aÞ(ðJ
#TÞ &ðr' rA'a;aÞ

rrA'a;a
: (2)

The intercluster relative-motion wave functions $J#TðrÞ
satisfy the integral-differential coupled-channel equations

X

"0

Z
dr0r02½N '1=2HN '1=2(""0ðr; r0Þ

$"0ðr0Þ
r0

¼ E
$"ðrÞ
r

; (3)

with bound- or scattering-state boundary conditions.
Here, H J#T

""0 ðr; r0Þ and N J#T
""0 ðr; r0Þ, commonly referred

to as integration kernels, are, respectively, the
Hamiltonian and overlap (or norm) matrix elements over
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The deuteron-projectile formalism:  
Three-nucleon interaction and/or A1>4 target  
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Deuterium-Tritium fusion with chiral NN+3N forces 

"  Towards first ab initio 
calculation of 3H(d,n)4He 
fusion with 3N forces 

•  Nmax = 9 model space 

•  n+4He & d+3H continuum 
channels 

•  Up to 14 5He states 
 

•  Only g.s. of 4He and 3H: 
effect of target excitation 
described by 5He states 

•  3-body dynamics 
approximated above 
deuteron breakup  
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 Spin-parity assignment of 0.78 MeV resonance of 9Be  

Low peak in the experimental total cross section: 
E(5/2-)~0.78 MeV above the threshold 

(Uncertain spin-parity assignment) 
      

9Be spectrum above d-7Li threshold 

Calibration reaction for astrophysical process: 7Li(d,p)8Li as 
target calibration for 7Be(p,γ)8B (Solar abundance problem) 

Possible mechanism of destruction of  7Li in the context of 
baryon-inhomogeneus models of the primordial 

nucleosynthesis  (Primordial Lithium abundance problem)  
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7Li(d,p)8Li scattering results (NCSM-RGM)  

Included channels:  
(1) p, 8Li (2) d, 7Li (3) coupling (d,p) 
(4) virtual breakup of d 

Not-included channels:  (1)8Be, n (2) 6Li, t 

NCSM-RGM calculations with SRG-evolved (λ=2.02 fm-1) chiral N3LO NN potentials 
4 eigenstates of 8Li, 2 eigenstates  of 7Li and 5 pseudostates of deuteron 
Nmax=8, hΩ=20 MeV  
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Impact of different partial waves (NCSM-RGM)  

7Li(d,p)8Li cross section 

l  Position of the first resonant peak slightly overestimated 
l  Increasing trend up to deuteron break-up fairly well reproduced 
   (contribution from 3/2+ partial wave) 
l  Double-peak structure at low energy not resolved  
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Motivation:pp-chains

• In the stars, the pp-chains are the first reactions which synthesize nuclear
elements since they do not require any catalyst.

p + p ! 2H + e+ + ⌫e

2H + p ! 3He + �

3He + 3He ! ↵+ p + p 3He + ↵ ! 7Be + �

7Be + e� ! 7Li + ⌫e
7Be + p ! 8B + �

7Li + p ! ↵+ ↵ 8B ! ↵+ ↵+ e+ + ⌫e

Branch I Branch II Branch III
⇡ 69% ⇡ 30.9% ⇡ 0.1%

• The relative rates of the 3He(↵, �)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.

Solar p-p chain 



0 0.5 1 1.5 2 2.5
Ekin [MeV]

0

5

10

15

20

25

30

35

40

S 17
 [e

V
 b

]

Filippone
Strieder
Hammache
Hass
Baby
Junghans
Schuemann
Davids
Kikuchi
De04 MN E1
NCSM/RGM E1

7Be(p,γ)8B

(a)

§  NCSM/RGM calculation of  7Be(p,γ)8B radiative capture 
§  7Be states 3/2-,1/2-, 7/2-, 5/2-

1, 5/2-
2

 

§  Soft NN potential (SRG-N3LO with Λ = 1.86 fm-1) 
 

7Be(p,γ)8B radiative capture 

33 

8B 2+ g.s. bound by  
136 keV  

(expt. 137 keV) 

S(0) ~ 19.4(0.7) eV b 

Data evaluation: 
S(0)=20.8(2.1) eV b 
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We apply the ab initio no-core shell model/resonating group method (NCSM/RGM) approach to calculate
the cross section of the 7Be(p,γ )8B radiative capture. This reaction is important for understanding the
solar neutrino flux. Starting from a selected similarity-transformed chiral nucleon–nucleon interaction
that accurately describes two-nucleon data, we performed many-body calculations that simultaneously
predict both the normalization and the shape of the S-factor. We study the dependence on the number
of 7Be eigenstates included in the coupled-channel equations and on the size of the harmonic oscillator
basis used for the expansion of the eigenstates and of the localized parts of the integration kernels. Our
S-factor result at zero energy is on the lower side of, but consistent with, the latest evaluation.

© 2011 Elsevier B.V. All rights reserved.

The core temperature of the Sun can be determined with high
accuracy through measurements of the 8B neutrino flux, currently
known with a ∼ 9% precision [1]. An important input in modeling
this flux is the 7Be(p,γ )8B reaction [2] that constitutes the final
step of the nucleosynthetic chain leading to 8B. At solar energies
this reaction proceeds by external, predominantly nonresonant E1,
S- and D-wave capture into the weakly-bound ground state (g.s.)
of 8B. Experimental determinations of the 7Be(p,γ )8B capture in-
clude direct measurements with proton beams on 7Be targets [3–5]
as well as indirect measurements through the breakup of a 8B
projectile into 7Be and proton in the Coulomb field of a heavy tar-
get [6–8]. Theoretical calculations needed to extrapolate the mea-
sured S-factor to the astrophysically relevant Gamow energy were
performed with several methods: the R-matrix parametrization [9],
the potential model [10–12], microscopic cluster models [13–15]
and, recently, also using the ab initio no-core shell model wave
functions for the 8B bound state [16]. The most recent evaluation
of the 7Be(p,γ )8B S-factor at zero energy, S17(0), has a ∼10% er-
ror dominated by the uncertainty in theory [2].

In this Letter, we present the first ab initio many-body calcula-
tions of the 7Be(p,γ )8B capture starting from a nucleon–nucleon
(NN) interaction that describes two-nucleon properties with high
accuracy. We apply a recently developed technique that combines
ab initio no-core shell model (NCSM) [17] and resonating-group
method (RGM) [18,19] into a new many-body approach [20–22]
(ab initio NCSM/RGM) capable of treating bound and scattering

* Corresponding author at: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3,
Canada.

E-mail address: navratil@triumf.ca (P. Navrátil).

states of light nuclei in a unified formalism. We use, in particular,
the orthonormalized NCSM/RGM many-body wave functions given
by
∣∣Ψ Jπ T 〉

=
∑

νν ′

∫
drr2

∫
dr′r′2 Âν

∣∣Φ Jπ T
νr

〉

× N −1/2
νν ′

(
r, r′)χ

Jπ T
ν ′ (r′)

r′ , (1)

with the inter-cluster antisymmetrizer Âν , the center-of-mass sep-
aration r⃗ A−a,a , and binary-cluster channel states
∣∣Φ Jπ T

νr
〉
=

[(∣∣A−aα1 Iπ1
1 T1

〉∣∣aα2 Iπ2
2 T2

〉)(sT )

× Yℓ(r̂ A−a,a)
]( Jπ T ) δ(r − rA−a,a)

rrA−a,a
. (2)

The wave functions χ Jπ T
ν (r) of the relative inter-cluster motion

satisfy the integro-differential coupled-channel equations

∑

ν ′

∫
dr′r′2[N − 1

2 H N − 1
2
]
νν ′

(
r, r′)χν ′(r′)

r′ = E
χν(r)

r
(3)

with bound- or scattering-state boundary conditions. The Hamilto-
nian and norm kernels,

H Jπ T
ν ′ν

(
r′, r

)
=

〈
Φ

Jπ T
ν ′r′

∣∣Âν ′ H Âν

∣∣Φ Jπ T
νr

〉
, (4)

N Jπ T
ν ′ν

(
r′, r

)
=

〈
Φ

Jπ T
ν ′r′

∣∣Âν ′ Âν

∣∣Φ Jπ T
νr

〉
, (5)

contain all the nuclear structure and antisymmetrization properties
of the problem. Further relevant details of the NCSM/RGM formal-
ism are given in Ref. [20].

0370-2693/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2011.09.079
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In progress 
J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi  
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E1 radiative capture with small E2 contribution at 7/2- resonance 

NCSMC calculations with chiral SRG-N3LO NN potential (λ=2.15 fm-1) 
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Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to three-body clusters (6He ~ 4He+n+n): NCSMC in progress 

 

 

•  Ongoing projects: 
–  Transfer reactions 
–  Applications to capture reactions important for astrophysics 
–  Bremsstrahlung 

•  Outlook 
–  Alpha-clustering (4He projectile)  

•  12C and Hoyle state: 8Be+4He 
•  16O: 12C+4He 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  


