

Double-beta decay of ⁹⁶Zr: nuclear physics meets geology

ADAM MAYER¹

DIETER FREKERS², MICHAEL WIESER¹, ROBERT THOMPSON¹ AND JENS DILLING³

¹UNIVERSITY OF CALGARY

²UNIVERSITY MÜNSTER

3TRIUMF

Motivation and summary

- Double-beta decay measurements give insight into properties of the neutrino, one of the least well understood particles
- ▶ Objective: Determine the half-life of the $\beta\beta$ -decay of $^{96}Zr \rightarrow ^{96}Mo$
- Approach: Use two different measurements to determine different parameters related to the half-life
 - At U of Calgary: geochemical measurement of ββ-decay half-life
 - ► At U Jyväskylä: measure the Q-value of the decay
- Motivation: Understand a discrepancy between a direct measurement of the decay at NEMO in 2010 and the last geological measurement from 2001

96Zr decay scheme

- Geochemical measurement
 - ▶ 0.94(32) x 10¹⁹ a
 - ▶ Wieser and DeLaeter 2001
- ββ counting measurement
 - ▶ 2.4(3) x 10¹⁹ a
 - ▶ NEMO Collaboration 2010
- \triangleright > 2 σ difference!
- Competing single beta-decay half-life?
 - ▶ Theoretical half-life: ~2.6 x 10²⁰ a
 - Dependent on Q-value of the decay

Double-beta decay half-life by stable isotope geochemistry

- Verify measurements by Wieser and DeLaeter in 2001
- Excess ⁹⁶Mo compared to ⁹⁶Zr tells us the half-life of the decay

Zircon

1.8 Ga ZrSiO₄

 $2.8 \% ^{96}\text{Zr}$ $^{96}\text{Zr} \rightarrow ^{96}\text{Mo} + 2e^{-} + 2\bar{\nu}$

Sample preparation: Acid digestion

Sample digested in high temperature concentrated HF in an acid digestion bomb

Sample preparation: Mo separation

▶ In order to measure ⁹⁶Mo, we must first separate the Mo from the Zr

Sample analysis: MC-ICP-MS

How will we improve over the previous measurement?

Original measurements performed with Thermal Ionization MS

	Previous (TIMS)	New (MC-ICP-MS)
Sensitivity	100 ng Mo	10 ng Mo
Chemistry blank	10 ng Mo	1 ng Mo
Precision	1.0 ‰	0.1 ‰

All related measurements, i.e. Zr concentration and U-Pb dating will be performed in house

Q-value measurements at JYFLTRAP

- Geological measurements so far provide evidence for 2nd decay route
- Single β-decay half-life dependent Q-value

JYFLTRAP

▶ Penning trap mass spectrometer at University of Jyväskylä, Finland

Penning trap mass measurements

- Ion motion dependent on q/m and trap parameters
 - ▶ (1) magnetron
 - ▶ (2) axial
 - (3) reduced cyclotron

- ▶ Apply RF quadrupole field
 - ► Excite reduced cyclotron motion
- Measure time-of-flight to determine energy gain
- Measure relative to reference isotope (i.e. 85Rb) to eliminate uncertainty due to B-field

Questions we will answer

- Can we confirm the discrepancy between the NEMO direct and Wieser/DeLaeter geological measurements?
- Is a highly forbidden single-beta decay also contributing to the decay?
- ▶ If the discrepancy is confirmed, and cannot be accounted for, is this evidence for time-dependent double-beta parameters?