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X-Ray Tomography
• Greek:

• “tomos”for “slice” or “section”.
• “graphe” means “drawing”.

• Tomograph: a cross-sectional image or a “slice”.
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CT Scanner
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Computed Tomography (CT)

• Image can be only obtained by computation, solving an
inverse problem:

Measurements
Map−1

−−−−→ Parameters

• Measurements: intensity of transmitted radiation.
• Parameters: attenuation coefficient of incident radiation in

each pixel.
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Forward Model
Best if based on Particle (Boltzmann) Transport Equation:

1
v

∂
∂tϕ(⃗r ,E , Ω⃗, t) [Volumetric Rate of Change] =

Q(⃗r ,E , Ω⃗, t) [Independent Source]
−Ω⃗ · ∇ϕ(⃗r ,E , Ω⃗, t) [Streaming/Divergence]

−Σt (⃗r ,E , t) ϕ(⃗r ,E , Ω⃗, t) [Removal (Absorption + Scattering)]
+
∫
Σs (⃗r ,E ′ → E ; Ω⃗ ′ → Ω⃗, t) ϕ(⃗r ,E ′, Ω⃗ ′, t) dE ′ dΩ⃗ [Scattering in]

+
∫
νΣg (⃗r ,E ′ → E ; Ω⃗ ′ → Ω⃗, t) ϕ(⃗r ,E ′, Ω⃗ ′, t) dE ′ dΩ⃗ [Generation]

Solution is difficult:
• Many variables (3 position, 1 Energy, 2 Direction, 1 time).
• Direction has no point of origin.
• Integro-differential equation.
• Not self-adjoint: Σ(E ′ → E) ̸= Σ(E → E ′).

Solvable by sophisticated methods (Spherical Harmonics,
Discrete Ordinates, Monte Carlo): not directly invertible.
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One Common Simplification
Exponential Law of Attenuation

ϕ(⃗r ,E , Ω⃗) = ϕ(⃗r0,E , Ω⃗) exp

[
−
∫ r⃗

r⃗0

Σt(E , r⃗ ′) dr ′
]

Obtained upon the solution of the Transport equation under the
following conditions:

1. steady-state,
2. away from any sources of radiation,
3. at a particular direction,
4. when the radiation energy does not change.

Suitable for modeling the transmission of (i) narrow (pencil)
radiation beams, while (ii) not accounting for radiation spread
with distance.
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Simplification: Pencil-Beam Attenuation

-- I = Io exp(−Σt)I0

�-t

-
-

Pencil (idealistic) Beam

Collimated (realistic) beam

• There is no such a thing as a pencil beam.
• Need to measure away from source.
• For a multi-energetic source, e.g. x-rays, unless the energy

spectrum is measured:
• Recoded intensity will involve all energies.
• Cannot discern the attenuation coefficient at each energy.
• Only an effective attenuation coefficient is obtainable.
• Beam hardening problem.
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Another Common Simplification
Inverse-Square Law

ϕ(r⃗1 − r⃗0,E)

ϕ(r⃗2 − r⃗0,E)
=

|r⃗2 − r⃗0|2

|r⃗1 − r⃗0|2

Obtained upon the solution of the Transport equation under the
following conditions:

• steady state,
• for a point source,
• for an isotropic source,
• in vacuum (i.e. in the absence of any material).
• radiation energy will not change.
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Inverse Problem

Solves for:
• Source energy spectrum, Q(E), when characterizing a

radiating source,
• Internal source spatial distribution, Q(⃗r), in emission

imaging (SPECT or PET),
• External source spatial and angular distribution, Q(⃗r , Ω⃗), in

radiotherapy planning, or
• Material distribution, Σt (⃗r), in imaging (CT).

Simplified models are typically used for ease of inversion, but
attempts are made at full utilization of the Boltzmann transport
equation.
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Inverse Transport
Adjoint Transport: calculations initiated from detectors to

determine the most likely location of a concealed
source1.

Iterative Matching: Nonlinear optimization to find source
terms and medium that minimize the difference
between calculations and measurements2.

Response Matrix: for detector unfolding3 and for SPECT4.
Perturbation Method (Inverse Method): Inverse problem is

viewed as a perturbation of a nominal reference
configuration, and Monte Carlo simulations are
used to estimate detector responses with factors
that contain the unknown parameters5,6.

1Jarman, K.D. et al., April 2010. ANS Topical Meeting, Las Vegas, NV.
2Mattingly, J., Mitchell, D.J., 2010. IEEE Trans. Nucl. Sci. 57, 3734-3743.
3Search (http://rsicc.ornl.gov/Catalog.aspx?c=PSR).
4Floyd Jr., C.E. at el.1985. IEEE Trans. Nucl. Sci. NS-32, 779-785.
5Yacout, A.M., Dunn, W.L., 1987. Adv. X-ray Anal., 30, 113-120.
6Dunn, W.L., 2006. Trans. Amer. Nucl. Soc. 5, 532-533.
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Computed Tomography
Pencil Beams
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CT: Simple-Model Inversion
Exponential Attenuation Law

p(⃗r ,E , Ω⃗) = − ln
ϕ(⃗r ,E , Ω⃗)

ϕ(⃗r0,E , Ω⃗)
= −

∫ r⃗

r⃗0

Σt(E , r⃗ ′) dr ′

• RHS = integral along line ≡ Radon Transform.
• Radon Transform is closely related to Fourier transform (in

the frequency domain).
• Fourier transform is readily amenable to numerical

manipulation, via FFT.
• Fourier inversion is not commonly used in image

reconstruction, because of its sensitivity to error.
• Inverse Fourier transform ≡ backprojection of transmission

projections, with the magnitude of frequency as a filter.
• Fourier filter backprojection is the most widely used

method in transmission imaging.
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Pencil-Beam Inversion

To obtain meaningful results from Radon transforms, one must:
• Collimate detector field-of-view (FoV).
• Eliminate scattering.
• Remove low-energy radiation (scattering & beam

hardening)

14 / 28



Introduction Forward Problem Inverse Problem Transmission Imaging Emission Imaging Scatter Imaging Conclusions

Well-posedness

The inverse problem should be well-posed, i.e.:
1. There exists a solution for a given set of measurements,
2. The solution is unique, and
3. The problem is continuous.

• Numerical solution requires discretization, which violates
the third condition.

• Practical inverse problems are ill-posed:
• A small change in measurements =⇒ large change in

solution values.
• Solution is sensitive to modeling error and measurement

uncertainties.

• Solution is regularized with the aid of a priori information,
constraints on solution, smoothing, etc.
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Transmission Imaging
Example: 2 × 2 X-ray Tomography in a Circular Section
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Is it really Simple?
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Challenges to Radon Transform: integration over a line:

Discretization: square pixels at edges, partial filling.
Section Depth: averaging of content.
Pencil Beam: there is no such a thing.
Source Collimation: wider beam, an uneven coverage,

divergence effect.
Detector Collimation: two conical intersecting FoV’s.
Uncollimated Detector: unequal travel distance, scattering.
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2 × 2 X-ray Tomography in a Circular Section
Source/Detection Energy Challenges

Source Energy: x-ray source, 0 < E < eVp.
Attenuation Coefficient: Σ(E) varies with energy.
Detection Energy: Spectrum or total, detection efficiency

f (E), beam hardening.
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2 × 2 X-ray Tomography in a Circular Section
Complex Forward Model

• Integrate over source surface,
∫

dS.
• Integrate over Source Cone:

∫
dΩ.

• Detect all energies, integrate over energy:
∫

dE .
• Incorporate Detector Efficiency, η(E).
• Include effect of scattering, B(Σr ,θ,ϕ,Rθ,ϕ).
• Include divergence.

ϕ =

∮ ∫ Ep

0

∫ Ωs

0
ϕ0(E , Ω⃗)B(Σr ,θ,ϕ,Rθ,ϕ)

e−
∫ Rθ,ϕ

0 Σr,θ,ϕ,E dr

4πR2
θ,ϕ

dΩ η(E) dE dS

Bye Bye Inverse Radon/Fourier, Filter backprojection, or any
other straightforward inversion.
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2 × 2 X-ray Tomography in a Circular Section
Simplifying Forward Model

1. Replace cone beam with an equivalent pencil beam:
• Burdened with inherent assumptions of attenuation law.
• Forcing an even, but unrealistic FoV.

2. Normalize measured intensity (flux) to that measured in
air:

• Reduce divergence effect.
• Evaluated Σ is with respect to that of air.

3. Reduce scattering:
• Place detector as far as possible from object.
• Use high-energy source.

4. Ignore or measure attenuation in air.
5. Assume an equivalent monoenergetic source energy:

invert for an effective attenuation coefficient, Σe.
6. Filter source to remove low-energy component: reduce

beam hardening.
7. Ensure source-detector alignment.
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2 × 2 X-ray Tomography in a Circular Section
Forward Model

Logarithmic transformation for linearization + discretiziation:

pi = − ln
ϕi

ϕ0i

= −
Ni∑
j

Σe
j ∆rij

Discretiziation has a homogenizing effect.

Matrix form:
p1
p2
p3
p4

 =


∆x ∆x 0 0
0 0 ∆x ∆x
0 ∆y ∆y 0
∆y 0 0 ∆y




Σe
1

Σe
2

Σe
3

Σe
4


p = HΣe
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2 × 2 X-ray Tomography in a Circular Section
Inverse Problem

• Matrix H is singular: one equation is obtainable from the
linear combination of the other three.

• Setup was flawed!
• Add one more projection at an angle ̸= π

2 .
• Non-square matrix, minimize:

χ2 =
[
HΣe − p

]2

Leading to:

Σe =
[
HTH

]−1
HTp

-

-
6

I0
I1

I2

I4 I3

6

1 2

34

R
I5
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Dealing with Ill-posedness
Regularization

Minimize:

χ2 = W
[
HΣe − p

]2
+ α2 [G(Σe − Σ⋆)

]2

W: Weight matrix to favor more accurate measurements.
G: a regularization matrix aiming at smoothing solution.
α2: a regularization parameter, controls the degree of
smoothing.
Σ⋆: a credible estimate of the solution, if any.

Leading to:

Σe =
[
HTWH + α2G2

]−1 [
HTWp + α2G2Σ⋆

]
A comprehensive list of regularization methods is given in:
Hussein, E.M.A., 2011. Computed Radiation Imaging, Elsevier
Insights, Elsevier Burlington, MA.
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Emission Imaging: SPECT & PET

511
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Emission Imaging: Simple Model

• When attenuation is ignored −→ Radon Transform =
integration of intensity over lines of detection.

• Can compensate for attenuation by:
• Associated CT image: SPECT-CT Systems.
• Some independent transmission measurements.
• Estimated average value.

• Incorporating attenuation into the Radon transform results
in an exponential Radon transform −→ shifting frequency
of the unattenuated Fourier coefficient and altering the
corresponding amplitude.
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Scatter Imaging
Arsenault & Hussein: US Patent No. 7,203,276

Radon/Fourier transforms are not applicable.

exp
[
−
∫
Σt(r ,E) dr

]
exp

[
−
∫
Σ′

t(r
′,E ′) dr ′

]
[Σs∆V ]
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Conclusions

Computed Tomography is an Inverse Problem.
On the Forward problem:

As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to
reality.
Albert Einstein

On the Inverse Problem:

[S]ometimes we tend to resort to inversion techniques too
blindly, without using our judgment or “feel” about handling a
given problem, which may lead to “antiaesthetic” excesses.
Diran Deirmendjian7

7In: Deepak, A., Ed. (1977). Inversion methods in atmospheric remote
sounding, p. 138, Academic Press, New York.
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http://www.elsevierdirect.com/ISBN/9780123877772/
Computed-Radiation-Imaging
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