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• Few and many-body methods     
   How do nuclear forces give rise    
   to structure of nuclei?  
   How do we explain reactions?

• Astrophysics 
   How does nuclear physics drive 
   the nucleosynthesis of elements?  

• Interactions 
   How can we connect  
   nuclear forces to QCD?   

 Connecting 
 to  

 QCD

 Connecting 
 to  

 Astrophysics

Develop a unified theory of all nuclei in the nuclear chart 

Nuclear Theory



In the limit of vanishing quark masses   
chiral symmetry (left- and right-handed quarks transform 
independently)

Quark/gluon (high energy) dynamics

QCD chiral symmetry

quarks

Compatible with explicit and spontaneous  
chiral symmetry breaking

Nucleon/pion (low energy) dynamics

p

n

Leff = L⇡⇡ + L⇡N + LNN + . . .

Chiral Effective Field Theory



Separation of scales 

Details of short distance physics not resolved, but 
captured in low energy constants (LEC)
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Chiral Effective Field Theory

Limited resolution at low energy 

L =
⇤

k

ck

�
Q

�b

⇥k

Systematic expansion 

(q/Λ)0

(q/Λ)3

(q/Λ)4

π
N

(q/Λ)2

Goal: Predict observables in other nuclei

Future: lattice QCD? 
Now fit to experiment
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Pohl et al., Nature (2010) 
µH Lamb shift

ordinary Hydrogen
e-

µ-

µ-

Strong experimental program at PSI (Switzerland) to unravel this mystery by studying other µ-atoms? 

Few-body studies and the proton-radius puzzle 
 

Is lepton universality violated? 

�E2S�2P = �QED + �nucl +
m3

r(Z↵)4

12
hR2i

nuclear structure corrections 

Data on these nuclei currently being analyzed at PSI using our predictions

 With TRIUMF postdoc Chen Ji  
Calculation for 𝜇4He+  

r

1% error obtained 
averaging potentials 
and varying  chiral EFTPhys. Lett. B 736, 334 (2014)

 With O.J.Hernandez, Msc Student at Manitoba  
Calculation for 𝜇D 
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u
cl



6

Coupled-cluster theory with continuum 

Soft dipole mode well described by theory

 With M.Miorelli, PhD student at UBC  
 PRC 90, 064619 (2014) 

NN chiral forces

New method to extend ab-initio calculations of break-up 
observables to medium mass nuclei
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Leistenschneider et al.

22O

CCSD

Dipole response of neutron-rich nuclei

Prel
im

inary This method can be used to tackle quasi-elastic electron and 
neutrino scattering off nuclei  

!
Ultimate Goal: neutrino scattering off 16O (CCQE)  
                         needed for detector simulations 

Present Goal:  
test the theory on electron scattering off 4He and 16O 

With Tianrui Xu, undergraduate at UBC 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Coulomb sum rule (integral of charge response) 

Future: Gamow-Teller strengths 
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Coupled-cluster calculations on 48Ca 

In collaboration with the ORNL we are developing ab-initio calculations to predict observables for: 

	
  
•  Parity violation electron scattering Calcium Radius Experiment (CREX)  
    at JLab to measure Rskin    
   

Spokesperson: J. Mammei, University of Manitoba
Measure FW to infer distribution of neutrons

as

Rskin

48Ca

NN only

Preliminary

�
+

Rskin,↵D

!
•  (p,p’) scattering to extract the electric dipole polarizability at RCNP, Japan 
       
            is related to the symmetry energy in the EOS of nuclear matter  
  

↵D = 2↵

Z 1

!th

d!
RD(!)

!
electric dipole response function

↵D + 3NF

—



• Ab initio no-core shell model!
– Short- and medium range correlations!
– Bound-states, narrow resonances!
– Harmonic-oscillator basis

1max += NN

NCSM

Unified approach to bound & continuum states; 
to nuclear structure & reactions 
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S. Baroni, P. Navratil, and S. Quaglioni,  
PRL 110, 022505 (2013); PRC 87, 034326 (2013).
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5Li g.s. resonance & p-4He scattering 
6Li states & d-4He scattering
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Unified description of 6Li states and d-α scattering !
Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., its 
resonances and the d-α cross sections.  !

The determined asymptotic D- to S-state ratio of the 
6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. !
Calculations of the capture reaction 2H(α ,γ)6Li 

important for astrophysics are under way.

Predictive power in the 5Li 3/2- g.s. resonance region: 
Applications to material science

NCSMC

Lawrence Livermore National Laboratory 26 LLNL#PRES#XXXXXX 

 
Unified description of 6Li structure and d+4He dynamics 

"  NCSM extrapolated g.s. energy 
in agreement with NCSMC 

"  Wave functions with (correct) 
Whittaker asymptotic with 
NCSMC only! 

"  Asymptotic D- to S-state ratio of 
6Li g.s. in d+4He configuration  

•  Not well determined, even 
as to its sign 

•  Our results do not support a 
near-zero value 

G. Hupin, S. Quaglioni, and  P. Navratil, ArXiv: 1412.4101  

George & Knutson,  
PRC 59, 598 (1999): 
Determination from 

6Li-4He elastic 
scattering 

K.D. Veal et al.,  
PRL 81, 1187 (1998): 
Determination from 

 (6Li,d) reactions 
on medium-heavy 

targets. 

! 

6Li(g.s.) NCSMC Experiment 

E [MeV] -32.01 -31.994 

C0 [fm-1/2] 2.695 2.91(9) 2.93(15) 

C2 [fm-1/2] -0.074 -0.077(18) 

C2/C0 -0.027 -0.025(6)(10) 0.0003(9) 

5He g.s. resonance & p-4He scattering 
6Li states & d-4He scattering 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He

Unified Description of 6Li Structure and Deuterium-4He Dynamics
with Chiral Two- and Three-Nucleon Forces

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,‡
1Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

2TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.

DOI: 10.1103/PhysRevLett.114.212502 PACS numbers: 21.60.De, 24.10.Cn, 25.45.-z, 27.20.+n

Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest

PRL 114, 212502 (2015) P HY S I CA L R EV I EW LE T T ER S
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Ab initio NCSMC with chiral NN+3N forces 
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the 6Li g.s. wave function in the d-α configuration 
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Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,
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Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
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based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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Unified description of 6Li structure and d+4He dynamics 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Unified description of 6Li states and d-α 
scattering 

 
Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that

3

0.0

1.0

2.0

3.0

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Kreger et al.

0 3 6 9 12
E

p
 [MeV]

0.1

0.2

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Miller et al.
Nurmela et al.

θ
p
= 141

o

4
He(p,p)

4
He

θ
p
= 25

o

(a)

(b)

FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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Unified description of 6Li structure and d+4He dynamics 
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Whittaker asymptotic with 
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6Li g.s. in d+4He configuration  

•  Not well determined, even 
as to its sign 

•  Our results do not support a 
near-zero value 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by

1.0 1.5 2.0 2.5 3.0 3.5 4.0
E

p
 [MeV]

0.1

0.2

0.3

d
σ

/d
Ω

p
 [

b
/s

r]

Kraus et al.
Lu et al.
Miller et al.
Nurmela et al.

7
6
5

4
He states

θ
p
= 169

o

FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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Unified description of 6Li structure and d+4He dynamics 

"  NCSM extrapolated g.s. energy 
in agreement with NCSMC 

"  Wave functions with (correct) 
Whittaker asymptotic with 
NCSMC only! 

"  Asymptotic D- to S-state ratio of 
6Li g.s. in d+4He configuration  

•  Not well determined, even 
as to its sign 

•  Our results do not support a 
near-zero value 

G. Hupin, S. Quaglioni, and  P. Navratil, ArXiv: 1412.4101  

George & Knutson,  
PRC 59, 598 (1999): 
Determination from 

6Li-4He elastic 
scattering 

K.D. Veal et al.,  
PRL 81, 1187 (1998): 
Determination from 

 (6Li,d) reactions 
on medium-heavy 

targets. 

! 

6Li(g.s.) NCSMC Experiment 

E [MeV] -32.01 -31.994 

C0 [fm-1/2] 2.695 2.91(9) 2.93(15) 

C2 [fm-1/2] -0.074 -0.077(18) 

C2/C0 -0.027 -0.025(6)(10) 0.0003(9) 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.

DOI: 10.1103/PhysRevC.90.061601 PACS number(s): 21.60.De, 24.10.Cn, 25.40.Cm, 27.10.+h

Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,
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based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,
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The resulting NCSMC translational-invariant ansatz is
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations
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Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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Unified description of 6Li structure and d+4He dynamics 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Unified description of 6Li states and d-α 
scattering 

 
Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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α
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].

Predictive power in the 5He 3/2- g.s. resonance region: 
Applications to material science 
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Unified description of 6Li structure and d+4He dynamics 

"  NCSM extrapolated g.s. energy 
in agreement with NCSMC 

"  Wave functions with (correct) 
Whittaker asymptotic with 
NCSMC only! 

"  Asymptotic D- to S-state ratio of 
6Li g.s. in d+4He configuration  

•  Not well determined, even 
as to its sign 

•  Our results do not support a 
near-zero value 

G. Hupin, S. Quaglioni, and  P. Navratil, ArXiv: 1412.4101  

George & Knutson,  
PRC 59, 598 (1999): 
Determination from 

6Li-4He elastic 
scattering 

K.D. Veal et al.,  
PRL 81, 1187 (1998): 
Determination from 

 (6Li,d) reactions 
on medium-heavy 

targets. 
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6Li(g.s.) NCSMC Experiment 

E [MeV] -32.01 -31.994 

C0 [fm-1/2] 2.695 2.91(9) 2.93(15) 

C2 [fm-1/2] -0.074 -0.077(18) 

C2/C0 -0.027 -0.025(6)(10) 0.0003(9) 

5He g.s. resonance & p-4He scattering 
6Li states & d-4He scattering 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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Unified description of 6Li structure and d+4He dynamics 

"  NCSM extrapolated g.s. energy 
in agreement with NCSMC 

"  Wave functions with (correct) 
Whittaker asymptotic with 
NCSMC only! 

"  Asymptotic D- to S-state ratio of 
6Li g.s. in d+4He configuration  

•  Not well determined, even 
as to its sign 

•  Our results do not support a 
near-zero value 

G. Hupin, S. Quaglioni, and  P. Navratil, ArXiv: 1412.4101  

George & Knutson,  
PRC 59, 598 (1999): 
Determination from 

6Li-4He elastic 
scattering 

K.D. Veal et al.,  
PRL 81, 1187 (1998): 
Determination from 

 (6Li,d) reactions 
on medium-heavy 

targets. 

! 

6Li(g.s.) NCSMC Experiment 

E [MeV] -32.01 -31.994 

C0 [fm-1/2] 2.695 2.91(9) 2.93(15) 

C2 [fm-1/2] -0.074 -0.077(18) 

C2/C0 -0.027 -0.025(6)(10) 0.0003(9) 

5He g.s. resonance & p-4He scattering 
6Li states & d-4He scattering 
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He

Unified Description of 6Li Structure and Deuterium-4He Dynamics
with Chiral Two- and Three-Nucleon Forces

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,‡
1Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

2TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
(Received 12 December 2014; published 29 May 2015)

We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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Ab initio NCSMC with chiral NN+3N forces 

simultaneously calculates properties of 6Li g.s., 
its resonances and the d-α cross sections.  

 
The determined asymptotic D- to S-state ratio of 
the 6Li g.s. wave function in the d-α configuration 

discriminates between two experiments. 
 

Calculations of the capture reaction 2H(α ,γ)6Li 
important for astrophysics are under way. 
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,
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Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
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based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].

Predictive power in the 5He 3/2- g.s. resonance region: 
Applications to material science 
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Ab initio calculations of 3He(α ,γ)7Be and 3H(α ,γ)7Li  !
NCSMC with chiral NN forces is used to investigate 

3He(α ,γ)7Be and 3H(α ,γ)7Li capture reactions important for 
astrophysics.  !

The 3He(α ,γ)7Be cross section results are directly compared to 
the recent TRIUMF DRAGON measurement. !

Work in progress by 
J. Dohet-Eraly, P. Navratil, S. Quaglioni, W. Horiuchi, G.Hupin, 

F. Raimondi 

E1 radiative capture with small E2 contribution at 7/2- resonance

NCSMC
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Motivation:pp-chains

• In the stars, the pp-chains are the first reactions which synthesize nuclear
elements since they do not require any catalyst.

p + p ! 2H + e+ + ⌫e

2H + p ! 3He + �

3He + 3He ! ↵+ p + p 3He + ↵ ! 7Be + �

7Be + e� ! 7Li + ⌫e
7Be + p ! 8B + �

7Li + p ! ↵+ ↵ 8B ! ↵+ ↵+ e+ + ⌫e

Branch I Branch II Branch III
⇡ 69% ⇡ 30.9% ⇡ 0.1%

• The relative rates of the 3He(↵, �)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.

Solar p-p chain 
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In-Medium SRG for Medium Mass Nuclei

Bogner, Hergert, JDH, Schwenk, in prep. 
MBPT IM-SRG Expt. USDB
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Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015) 
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Fluorine: competitive with phenomenology

Apply continuous unitary transformation: 
decouples “off-diagonal” shell-model Hamiltonian

Reproduce oxygen dripline with NN+3N forces

Oxygen spectra: agree with CCEI to ~300keV
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IM-SRG for Medium Mass Nuclei: Operators

Mg Charge radii

Radii for entire sd-shell are accessible.

Ragnar Stroberg (TRIUMF) E↵ective Operators w/ IMSRG May 22, 2015 19 / 23

O⇤(s) = e⌦(s)O⇤e�⌦(s) = O⇤ +
1

2

⇥
⌦(s),O⇤

⇤
+

1

12

⇥
⌦(s),

⇥
⌦(s),O⇤

⇤⇤
+ · · ·

U(s) = exp⌦(s)

Deficiencies due to starting Hamiltonian

Absolute radii for entire sd shell with NN+3N

First apply to scalar operators: E0 transitions

Commutator relations induce higher-body parts

Apply to general operator

TRIUMF  
postdoc Stroberg, Bogner, Hergert, JDH, Schwenk , in prep 

New approach: explicitly construct unitary transformation from operator U(s) = exp⌦(s)
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Neutrinoless Double-Beta Decay
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Overall ~25-30% increase for 76Ge, 82Se; 75% for 48Ca 

(T 0⌫��
1/2 )�1 = G0⌫ |M0⌫ |2|m�� |2

Broad impact for particle physics: 
Nature of neutrino (Majorana or Dirac) 
Lepton-number-violating process

Absolute mass scale of neutrino: must calculate 
nuclear matrix element

Standard approaches use bare operator 
Calculate shell-model effective operator

Uniform increase in value of nuclear matrix element

Next steps: 
Include two-body electroweak currents 
Calculate nonperturbatively with IM-SRG 
Include uncertainty estimates 
SRG-evolved beta-decay operator

76Ge Bare 3.12 

Effective 3.77 

82Se Bare 2.73 

Effective 3.62 

48Ca Bare 0.77 

Effective 1.30 

Lincoln, JDH et al., PRL (2013) 
 

JDH and Engel, PRC (2013) 
 

Kwiatkowski, et al., PRC (2014) 
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• The connection of forces to QCD and the use of advanced methods to solve the nuclear many-body problem 
    are supporting and motivating new measurements at TRIUMF and abroad

• The experiments with stable nuclei and exotic beams provide, at the same time, critical tests for the theory

• Nuclear astrophysics benefits from this interplay
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