#### **WTRIUMF TRIUMF Neutral Atom Trap 2016+**

Angular correlations of products for polarized and unpolarized  $\beta$  decays are sensitive to separate terms of:

 $\begin{aligned} & \mathcal{H}_{\text{int}} = \\ & \sum_{X} (\bar{\psi}_{p} \mathcal{O}_{X} \psi_{n}) (\mathcal{C}_{X} \bar{\psi}_{e} \mathcal{O}_{X} \psi_{\nu} + \mathcal{C}'_{X} \bar{\psi}_{e} \mathcal{O}_{X} \gamma_{5} \psi_{\nu}) \\ & \text{`X': Lorentz vector, axial vector, scalar, tensor} \end{aligned}$ 

• Spin-polarized experiments in progress Goal 0.001 accuracy  $\rightarrow$  sensitivity to  $M_x/G_x \sim M_W/\sqrt{0.001} \sim 2 \text{ TeV}$ 



•  ${}^{38m}$ K  $\beta$ - $\nu$  upgrade is sensitive to 'scalar' only and is complementary to other experimental constraints

• Time reversal violation in radiative  $\beta$  decay is not produced this way; is sensitive e.g. to MeV-scale QCD-like hidden sector models; TRV asymmetry 0.1 is allowed

• The  $E_{\nu}$  spectrum of <sup>92</sup>Rb and reactor  $\nu$  anomalies

### $\mathcal{C}^{\mathsf{TRIUMF}}$ Lepton helicity $\rightarrow$ angular distribution



 independent of isospin mixing and nuclear structure
 Radiative corrections 2x10<sup>-3</sup>, recoil order term is 3x10<sup>-4</sup>

← This decay pattern needs non-S.M. chirality

TRV  $\beta \gamma \nu$ 

#### **TRlumf Neutral Atom Trap collaboration**





\*\***S. Behling** \*\***B. Fenker** D. Melconian \***A. Gorelov** J.A. Behr M.R. Pearson K.P. Jackson





D. Ashery Undergrad

\*\* Grad student \* PDF

Supported by NSERC, NRC through TRIUMF, WestGrid, Israel Science Foundation, State of Texas

#### $0^+ ightarrow 0^+ eta$ -u

TRV  $\beta \gamma \nu$ 

#### extras

# $\Re TRIUMF$ 37K $A_{\beta}$ , $A_{recoil}$ : scalar, tensor, V+A









coupling to wrong-handed u

- $\pi 
  ightarrow e 
  u$  (Campbell Murray NPB 04) has improved 2x
- Possible contribution to  $m_{\nu}$  from  $C_{S} C_{s}'$  should be understood

#### $\mathfrak{CTRIUMF}$ TRV in radiative $\beta$ decay

Inspired by a S.M. term emergent from QCD (Harvey Hill Hill PRL 99 261601):

Gardner, He PRD 87 116012 (2013)  $-\frac{4c_5}{M^2}\frac{eG_F V_{ud}}{\sqrt{2}}\epsilon^{\sigma\mu\nu\rho}\bar{p}\gamma_{\sigma}n\bar{\psi}_{eL}\gamma_{\mu}\psi_{\nu,L}F_{\nu\rho}$  $\rightarrow Im(c_5g_V)\frac{E_e}{p_ek}(\vec{p_e}\times\vec{k_{\gamma}})\cdot\vec{p_{\nu}}$ 

e.g., QCD-like hidden sector with scale  $\sim$  MeV, few constraints

- ${}^{37}$ K A $\sqrt{B.R.}$   $\sim$  200x neutron
- $\bullet$  final state false TRV  $\approx$  0.001
- the new 'c5' term needs Fermi or Fermi+GT transition
- <sup>38m</sup>K 40,000 atoms  $\rightarrow$  TRV  $A_{\gamma}$  to 0.01 per 10 days Relatively unexplored compared to other TRV exps like EDMs. (radiative K decay TRV at INR Moscow 2007; 4-body final states at LHCb and BABAR).
- TRV Asym  $\sim$  0.1 is allowed by other experiments





#### $\mathfrak{E}^{\mathsf{TRIUMF}}$ TRV in radiative $\beta$ decay and EDMs

Dekens, Voss 1502.04629: dim 6 operators at TeV scale

$$\mathcal{L}_{6}^{\text{eff}} = -\frac{8ic_{w}}{gv^{2}} V_{ud} \operatorname{Re} C_{\varphi \tilde{W} B}(\Lambda) \varepsilon^{\mu\nu\alpha\beta} (\bar{u}_{L}\gamma_{\mu}d_{L}) (\bar{e}_{L}\gamma_{\nu}\nu_{L}) F_{\alpha\beta}$$

→  $10^{-10}$  asymmetries if constants ~ 1. Also generates EDMs → constants ~ 0.01 So TeV-scale general dim 6 ops **can** make TRV  $\gamma\nu\beta$  **and** EDMs, but don't make measureable nuclear radiative  $\beta$  decay; result ~  $p_{lepton}^2/scale^2$ .

The toy nonperturbative QCD-like MeV-scale example of Gardner and He is tuned to maximize contribution to neutron  $\beta$  decay and avoid other experiments. E.g. direct searches by colliders bury the possible effective mesons in jets. Do EDMs constrain the Gardner term anyway? Can a nonperturbative estimate be made?

#### $^{\odot}$ TRIUMF <sup>92</sup>Rb and the new reactor $\nu$ anomaly

The reactor  $\nu$  flux is 92%  $\pm$  4% of what is expected, to which JB says 'well done'. But there's another reactor anomaly:

 $^{92}\text{Rb}$  NNDC 2012:  $0^- \rightarrow 0^+$  g.s. 95% Jyväskylä 1504.05812v3.pdf total absorption spectroscopy 87.5 $\pm$ 2.5%  $\rightarrow$ 



a 4.5% change at interesting  $E_{\nu}$ , from one isotope.



We could measure the  $E\nu$ 

polarized  $0^+ \rightarrow 0^+ \beta$ - $\nu$  TRV  $\beta \gamma \nu$  reactor  $\nu s$  extras

#### **WTRIUMF TRIUMF Neutral Atom Trap 2016+**

• Spin-polarized experiments in progress  $A_{\beta}$  of <sup>37</sup>K 1st result to 1.5% (better fractional error than any but the neutron); blinded data being analyzed ~ 0.002 accuracy. Goal 0.001 accuracy in  $A_{\beta}$ ,  $A_{\text{recoil}} \rightarrow$  sensitivity to  $M_x/G_x \sim M_W/\sqrt{0.001} \sim 2$  TeV

•  ${}^{38m}$ K  $\beta$ - $\nu$  upgrade goal is 5x better, complementary to other scalar measurements



- Time reversal violation in radiative  $\beta$  decay TRV asymmetry 0.1 is allowed, sensitive to MeV-scale QCD-like hidden sector models
- $^{92}\text{Rb}~\nu$  spectroscopy could help with the reactor  $\nu$  shape anomaly

#### **<sup>⊗</sup>TRIUMF** <sup>37</sup>K decay recoil asymmetry



recoil singles asymmetry



Simulation for 5 days 10,000 atoms trapped

Would extract  $C_t + C'_t = 0.0018+0.0008$ , possible from SUSY [Profumo PRD 75 075017] with uncertainty smaller than world average in nuclear  $\beta$  decay

TRV  $\beta \gamma \nu$ 

## **℀™™F** <sup>38m</sup>K decay precoil spectrum



#### Simulation

Alternate high-statistics method for  $\mathbf{a}_{\beta\nu}$ Must be done at same time as full kinematic coincidence method, to characterize detectors and test for backgrounds

# $E_{\beta}$ detector response for "monoenergetic" $\beta$ 's from kinematics of other observables ( $\beta$ -recoil angle and recoil momentum)

200 data Monte Carlo GEANT 150 counts 100 511 keV summing backscatter/ bremsstrahlung <sub>1</sub> 50 2.5 2.0 3.0 3.5 E<sub>R</sub> [MeV]



β-recoil coincidences



- Gorelov PRL 2005  $a = 0.9981 \pm 0.0030 \pm 0.0032_{0.0037}^{0.0032}$
- New geometry goal is to collect all recoils
- To go to lower  $E_{\beta}$ , reconstruct it

## **<sup>⊗</sup>TRIUMF** <sup>38m</sup>K β-recoil error budget

| $\beta^+$ backscattering bkgd None None and $\vec{E}$ field<br>$F_{a+}$ Detector Response: $1/\sqrt{5}$ statistical | ls         |  |
|---------------------------------------------------------------------------------------------------------------------|------------|--|
| Linoshano tail/total $0.06\%$ $0.03\%$ error                                                                        |            |  |
| Eite shape tai/total 0.00% 0.03% effection fr                                                                       | om         |  |
| 511 kev Compton sum $0.09\%$ $0.04\%$ $\Box_{\beta}$ canonation in                                                  |            |  |
| Calibration, nonlinearity 0.17% 0.08% Interwoven background-free <sup>3</sup>                                       | 7 <b>K</b> |  |
| MCP Eff[E <sub>Ar+</sub> ] 0.07% 0.03%                                                                              |            |  |
| MCP Eff[ $\theta$ ]/XY position 0.08% 0.04%                                                                         |            |  |
| e <sup>-</sup> shakeoff [E <sub>recoil</sub> ] 0.18% 0.08%                                                          |            |  |
| Sum systematics 0.37% 0.14%                                                                                         |            |  |
| Total error 0.48% 0.19%                                                                                             |            |  |
| <ul> <li>Most systematic errors determined by statistics-limited</li> </ul>                                         |            |  |

data evaluation.

-

#### Bremsstrahlung is forward-peaked



You don't have to cover all solid angle with detectors to see the photons

#### TRIUMF's $\beta$ decay Neutral Atom Trap

- Isotope/Isomer selective
- $\bullet$  Evade 1000x untrapped atom background by  $\rightarrow$  2nd MOT
- 75% transfer (must avoid backgrounds!);  $10^{-3}$  capture
- 0.7 mm cloud for  $\beta$ -Ar<sup>+</sup>  $\rightarrow \nu$  momentum  $\rightarrow$ 
  - $\beta$ - $\nu$  correlation
- 99% polarized, known atomically (in progress)



TRV  $\beta \gamma \nu$ 

#### **<sup>⊗</sup>TRIUMF** <sup>37</sup>K shakeoff e<sup>−</sup> energy

● |Ē|=150 V/cm  $(B_z = 2G),$  $E_{shokeoff} \rightarrow radius$ distribution •  $\sim$ 1% above 25 eV threshold for double DNA strand breaks average energy makes  $< 10^{-5}$ contribution to Ft value



#### WIRIUMF Mirrors and Vud [Fenker, SSP2015] Measure V<sub>ud</sub> with mirror nuclei



#### 않TRIUMF <sup>37</sup>K and Vud [Fenker, SSP2015]

- Atomic structure allows for laser-trapping AND optical pumping
- Isobaric analogue decay simplifies nuclear structure corrections
- Strong branch to ground state is a very clean decay
- ►  $I^{\pi} = \frac{3}{2}^{+} \rightarrow \frac{3}{2}^{+}$  is a mixed Fermi-Gamow Teller decay

