Electroweak Physics

A. Aleksejevs, Grenfell Campus of Memorial University, Newfoundland S. Barkanova, Acadia University, Nova Scotia

Our students:

K. Marshall, Acadia University
W. Shihao, Grenfell Campus of Memorial University

Precision Scattering

- Many theories predict new particles, which disappeared at the time when the universe cooled.
- New physics particles are now present indirectly as interaction carriers and can be probed through precision measurements at low momentum transfer.
- To access the scale of the new physics at TeV level, we need to push one or more experimental parameters to the extreme precision.
- Low-Q² neutral-current interaction becomes sensitive to the TeV scale if:
 - $\delta(\sin^2\theta_W) \leq 0.5\%$
 - away from the Z resonance
- Precision Neutrino Scattering
- New Physics/Weak-Electromagnetic Interference
 - opposite parity transitions in heavy atoms
 - parity-violating electron scattering

Weak interaction provides indirect access to the new physics via interference terms between neutral weak and new physics amplitudes.

In SM at three level (Born):

$$Q_W(p) = 1 - 4\sin^2\theta_W$$

Since the value of the weak mixing angle is very close to 0.25, weak charge of proton (and electron) is suppressed in the SM, so $Q_W(p)$ and $Q_W(e) = -Q_W(p)$ offer a unique place to extract $\sin^2 \theta_W$.

For proton (current Qweak at JLab, planned P2 at MESA in Mainz):

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[Q_W(p) + F^p(Q^2, \theta) \right]$$

Parity-violation effects are enhanced in atoms with a large number of protons (Z) and neutrons (N) (parity-violation experiments with ²⁰⁹Bi, ²⁰⁵Tl and ¹³³Cs):

$$Q_W(Z, N) = Z(1 - 4\sin^2\theta_W) - N$$

The low-energy effective electron-quark $A(e) \times V(q)$ Lagrangian:

where g is the coupling constant, Λ is the mass scale, and the $h^q{}_V$ are the effective coefficients of the new physics.

In SM at tree level:

$$Q_W^p(SM) = -2(2C_{1u} + C_{1d})$$

A precise measurement of $Q_W(p)$ would thus test new physics scales up to TeV scales:

$$\frac{\Lambda}{g} \approx \frac{1}{\sqrt{\sqrt{2}G_F|\Delta Q_W^p|}}$$

Precision Scattering: <u>Qweak</u>

Run 0 Asymmetry Results (4% of full data):

PVeS Experiment Summary


```
Beam energy at vertex , < E_{\rm eff} > 1.155 \pm 0.003 GeV Momentum transfer < Q_{\rm eff}^2 > 0.0250 \pm 0.0006 (GeV)^2 Effective scattering angle, < \theta_{\rm eff} > 7.90 \pm 0.30° A_{\vec{e}p}(< Q^2 >_{\rm eff}) = -0.279 \pm 0.035 (stat.) \pm 0.031 (syst.) ppm
```

Qweak Collaboration: PRL 111, 141803 (2013)

Theory Input: Hadronic Corrections and Total Asymmetry

Model Independent

Model Dependent

Using hadronic uncertainty analyzes for γZ box from M. Gorchtein, Phys. Rev. Lett. 102, 091806 (2009) and A. Sibirtsev et. al., arXiv:1002.0740 [hep-ph], and applying full set of on-shell NLO contributions, we get following PV electron-proton asymmetry:

$$A_{PV}^{(Th)}$$
 = - 0.233 ± 0.007 (ppm)
 $A_{PV}^{(Exp)}$ = - 0.279 ± 0.035 (stat.) ± 0.031 (syst.) (ppm)

$$H^{PV} = \frac{G_F}{\sqrt{2}} \left[\underline{C_{1N}} (\bar{u}_e \gamma_\mu \gamma_5 u_e) (\bar{u}_N \gamma^\mu u_N) + C_{2N} (\bar{u}_e \gamma_\mu u_e) (\bar{u}_N \gamma^\mu \gamma_5 u_N) \right]$$

$$Q_{weak}^p = 2C_{1p} \left(Q^2 \to 0 \, GeV^2 \right)$$

$$Q_{weak}^{p(Th)} = 2C_{1p} = 0.0720 \pm 0.0010$$

$$Q_{weak}^{p(Exp)} = 2C_{1p} = 0.064 \pm 0.012$$

$$Q_{weak}^{n(Th)} = 2C_{1n} = -0.990 \pm 0.005$$

$$Q_{weak}^{n(Exp)} = 2C_{1n} = -0.975 \pm 0.010$$

Asymmetry is an observable which is directly related to the interference term:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \simeq \frac{2Re(M_{\gamma}M_Z^+ + M_{\gamma}M_{NP}^+ + M_ZM_{NP}^+)_{LR}}{\sigma_L + \sigma_R} \sim (10^{-5} \ to \ 10^{-4}) \cdot Q^2$$

To access multi-TeV electron scale it is required to measure:

$$\delta(\sin^2\theta_W) < 0.002$$

MOLLER experiment offers an unique opportunity to reach multi-TeV scale and will become complimentary to the LHC direct searches of the new physics.

The first observation of Parity Violation in Møller scattering was made by E-158 experiment at SLAC:

$$Q^2 = 0.026 GeV^2, A_{LR} = (1.31 \pm 0.14(stat.) \pm 0.10(syst.)) \times 10^{-7}$$

 $\sin^2(\hat{\theta}_W) = 0.2403 \pm 0.0013 \text{ in } \overline{MS}$

MOLLER, planned at JLab following the 11 GeV upgrade, will offer a new level of sensitivity and measure the parity-violating asymmetry in the scattering of longitudinally polarized electrons off unpolarized target to a precision of 0.73 ppb.

That would allow a determination of the weak mixing angle with an uncertainty of about 0.1%, a factor of five improvement in fractional precision over the measurement by E-158.

J. Benesch et al., MOLLER Proposal to PAC34, 2008

Theory Input: NLO and NNLO corrections

- •Calculated in the on-shell renormalization, using both:
 - Computer-based approach, with Feynarts, FormCalc, LoopTools and Form
 - T. Hahn, Comput. Phys. Commun. 140 418 (2001);
 - T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999);
 - J. Vermaseren, (2000) [arXiv:math-ph/0010025]
 - "By hand", with approximations in small energy region $\frac{\{t,u\}}{m_{Z,W}^2}\ll 1$, for $\sqrt{s}\ll 30~GeV$ and high energy approximation for $\sqrt{s}\gg 500~GeV$

Theory Input: NLO and NNLO corrections

$$\delta_A = \frac{A_{LR}^C - A_{LR}^0}{A_{LR}^0}$$

The relative weak (solid line in DRC (semi-automated) and dotted line in HRC ("by hand")) and QED (dashed line) corrections to the Born asymmetry A^0_{LR} versus $\sqrt[4]{s}$ at $\theta = 90^\circ$.

The filled circle corresponds to our predictions for the MOLLER experiment.

Theory Input: NLO and NNLO corrections

The Next-to-Next-to-Leading Order (NNLO) EWC to the Born ($\sim M_0 M_0^+$) cross section can be divided into two classes:

- Q-part induced by quadratic one-loop amplitudes ~ M₁M₁⁺, and
- T-part the interference of Born and two-loop diagrams $\sim 2 Re M_0 M_{2-loop}^+$.

$$\sigma = \frac{\pi^3}{2s} |M_0 + M_1|^2 = \frac{\pi^3}{2s} \left(\underbrace{M_0 M_0^+}_{0} + \underbrace{2 \operatorname{Re} M_1 M_0^+}_{\infty \alpha^2} + \underbrace{M_1 M_1^+}_{\infty \alpha^4} \right) = \sigma_0 + \sigma_1 + \sigma_Q$$

Theory Input: NLO and NNLO corrections

For the orthogonal kinematics: $\theta = 90^{\circ}$

Type of contribution	$\delta_{\mathrm{A}}{}^{\mathrm{C}}$	Published
NLO	-0.6953	PRD'10,YaF'12
+Q+ BBSE +VVer+ VerBSE	-0.6420	PRD'12,YaF'13
+ double boxes	-0.6534	EPJ'12
+NNLO QED	-0.6500	
+SE and Ver in boxes	-0.6504	YaF' 15
+NNLO EW Ver	under way	

Correction to PV asymmetry:

$$\delta_A^C = \frac{A_{LR}^C - A_{LR}^0}{A_{LR}^0}$$

Soft-photon bremsstrahlung cut:

$$\omega = 0.05\sqrt{s}$$

"..." means all contributions from the lines above

Theory Input: NLO and NNLO corrections

Predicted PV asymmetry up to NNLO:

$$A_{PV}^{(LO)} = 94.96 \text{ (ppb)}$$

$$A_{PV}^{(LO+NLO+NNLO)} \simeq 33.2 (ppb)$$

Theory Input: BSM Physics with Dark Vector

Consider a U(1)' gauge symmetry which may interact with hidden sector particles:

The gauge boson kinetic term (QED example):

$$L_{kin}^{QED} = -\frac{1}{4} A_{\mu\nu} A^{\mu\nu} \qquad (\text{with } A_{\mu\nu} \equiv \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})$$

The A' couples to SM particles through kinetic mixing of $U(1)_Y \& U(1)'$ [Holdom (1986)]:

$$B_{\mu} = \cos \theta_W A_{\mu} - \sin \theta_W Z_{\mu}$$

Expected size of kinetic mixing from loops of heavy fermions: $\epsilon \sim (g_Y g_{A'})/(16\pi^2) \lesssim 10^{-3}$

Theory Input: BSM Physics with Dark Vector

Parity-conserving, dark vector boson (kinetic) mixing with photon produces:
 Dark Photon

$$L_{int} = -eQ_f \epsilon \overline{f} \gamma_{\mu} f \cdot (A^{\mu} + \underline{\epsilon} A'^{\mu}) - \frac{e}{\sin \theta_W \cos \theta_W} \overline{f} (c_V^f \gamma_{\mu} + c_A^f \gamma_{\mu} \gamma_5) f \cdot Z^{\mu}$$

Parity violating, dark vector boson (mass) mixing with photon and Z boson produces:
 Dark Z' Boson

H. Davoudiasl, et. al., arXiv:1203.2947v2, Phys. Rev. D 85, 115019 (2012).

$$L_{int} = -eQ_f \epsilon \overline{f} \gamma_{\mu} \underline{f} \cdot (A^{\mu} + \underline{\epsilon} A'^{\mu}) - \frac{e}{\sin \theta_W \cos \theta_W} \underline{\overline{f} (c_V^f \gamma_{\mu} + c_A^f \gamma_{\mu} \gamma_5) \underline{f}} \cdot (Z^{\mu} + \underline{\epsilon}_{Z'} A'_{\mu})$$

$$\epsilon_{Z'}=\delta \frac{m_{Z'}}{m_Z}$$
 , where δ = 3 · 10⁻⁵ is an arbitrary model-dependent parameter

Theory Input: BSM Physics with Dark Vector

Calculation Strategy

- Complete the calculations of PV MOLLER asymmetries including oneloop (NLO) for the SM particles. This will define SM central value.
- Proceed with calculations of PV
 asymmetries with new physics
 particles including one-loop and
 construct exclusion plots for 1%
 deviations from the SM central values.

New-Physics particles (Dark Photon or Z') in the loops

Theory Input: BSM Physics with Dark Vector

Exclusion plot for MOLLER using Z' as a candidate for BSM physics

Relative correction to E mixing parameter due to loops

Theory Input: BSM Physics with Dark Vector

Sensitivity of the kinetic (ϵ) and mass (δ) mixing parameters to different masses of Z' within 1% deviation from SM central value

Conclusions

- Two electroweak PV experiments: Qweak (completed) and MOLLER (planned) are complimentary to LHC search for BSM physics.
- With relatively large uncertainty arising from Y-Z boxes, Qweak results are in agreement with SM predictions for weak charge of proton and neutron.
- MOLLER experiment is highly needed to put new constrains on weak charge of the electron.
- Dark Vector BSM physics scenarios for Moller process have best sensitivity for Z'.
- The Z' search in MOLLER is complimentary to $(g-2)_{\mu}$, where deviation with SM predictions reach 3.6σ