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Precision Scattering

* Many theories predict new particles, which disappeared at the time when the
universe cooled.

* New physics particles are now present indirectly as interaction carriers and can be
probed through precision measurements at low momentum transfer.

* To access the scale of the new physics at TeV level, we need to push one or more
experimental parameters to the extreme precision.

e Low-Q? neutral-current interaction becomes sensitive to the TeV scale if:

® 5(sinZBy) < 0.5% | ;

® away from the Z resonance

. . : : Lo
*Precision Neutrino Scattering

*New Physics/Weak-Electromagnetic Interference

® opposite parity transitions in heavy atoms
® parity-violating electron scattering

Weak interaction provides indirect access to the new physics via interference
terms between neutral weak and new physics amplitudes.



Precision Scattering: Qweak

In SM at three level (Born):

Qw(p) =1— 4 sin® Oy

Since the value of the weak mixing angle is very close
to 0.25, weak charge of proton (and electron) is
suppressed in the SM, so Qw(p) and Qw(e) = - Qw(p)
offer a unique place to extract sin?0w.

For proton (current Qweak at JLab, planned P2 at
MESA in Mainz):
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Parity-violation effects are enhanced in atoms with a large number of protons (Z) and
neutrons (N) (parity-violation experiments with 299Bi, 205T| and 133Cs):

(QU(Z *\*) — Z(l - 4,\111 HH ) N



Precision Scattering: Qweak

The low-energy effective electron-quark A(e) x V (q) Lagrangian:

_ PV | PV
L= Loy + Lyew

2
PV Gr g

- = —~ M PV L — q =i
LUV = ﬂew/f;ez(ilq "q Lnpw = 4—/\26%%62 hy qv"q
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where g is the coupling constant, A is the mass scale, and the hdy are the effective
coefficients of the new physics.

In SM at tree level:

w(SM) = —2(2C4, + Chy)

A precise measurement of Qw(p) would thus test new physics scales up to TeV scales:
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Precision Scattering: Qweak

Run 0 Asymmetry Results (4% of full data):
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Strange Form Factor (1998-2009)

10°
Apy

Beam energy at vertex , < Eeg >
Momentum transfer < Q2g >
Effective scattering angle, < O.g >

Asp (< Q% >e) = —0.279 £ 0.035 (stat.) =4 0.031 (syst.) ppm

1.155 + 0.003 GeV
0.0250 + 0.0006 (GeV)?

7.90 £ 0.30°

Qweak Collaboration: PRL 111, 141803 (2013)



Precision Scattering: Qweak

Theory Input: Hadronic Corrections and Total Asymmetry

Model Dependent

Model Independent

e e e e
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Using hadronic uncertainty analyzes for YZ box from M. Gorchtein, Phys. Rev. Lett. 102, 091806 (2009) and
A. Sibirtsev et. al., arXiv:1002.0740 [hep-ph], and applying full set of on-shell NLO contributions, we get
following PV electron-proton asymmetry:

Apy(™ = - 0.233 * 0.007 (ppm)
ApyEP) = - 0.279 * 0.035 (stat.) * 0.031 (syst.) (ppm)




Precision Scattering: Qweak
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Precision Scattering: MOLLER

Asymmetry is an observable which is directly related to the interference term:
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To access multi-TeV electron scale it is
required to measure:

6(sin” ) < 0.002

MOLLER experiment offers an unique
opportunity to reach multi-TeV scale and
will become complimentary to the LHC
direct searches of the new physics.



Precision Scattering: MOLLER

The first observation of Parity Violation in Mgller scattering was made by E-158

experiment at SLAC:

Q? = 0.026GeV?, Arr = (1.31 £ 0.14(stat.) £ 0.10(syst.)) x 10~7
sin?(fw ) = 0.2403 + 0.0013 in M S
0.250 ¢

— SM

e current A (lep) [Tevatron]
MOLLER, planned at JLab following the 11 GeV 0.245) ° future |
upgrade, will offer a new level of sensitivity and
measure the parity-violating asymmetry in the i Moller [SLAC]{ &
scattering of longitudinally polarized electrons off = IAPV(CS) {\.-,),S &
unpolarized target to a precision of 0.73 ppb. = £

i Moller [JLab] x S ;-

That would allow a determination of the weak Qweak [JLab] T ’%,,,}) A q(had) [SLC] -
mixing angle with an uncertainty of about 0.1%, a 0.230| PV-DIS [JLab] T Y NEA(b) [LEP]

factor of five improvement in fractional precision
over the measurement by E-158.
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J. Benesch et al., MOLLER Proposal to PAC34, 2008



Precision Scattering: MOLLER

Theory Input: NLO and NNLO corrections

"L 7,Z(W) 7,2(W)
Z /}/ Z /}/’Z 7;2
Y, '
Y.L

(1) (2) (3) (4) (5)

70 70
0= 5 [My+ Mif* = (MM +2ReM; M+ My M) = 09 + 01 + 00
X ()42 < X CVS ) X ()44
o1 = 0_1BSE + O_YG’P _I_O_lBox

*Calculated in the on-shell renormalization, using both:
« Computer-based approach, with Feynarts, FormCalc, LoopTools and Form
T. Hahn, Comput. Phys. Commun. 140 418 (2001);
T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999);
J. Vermaseren, (2000) [arXiv:math-ph/0010025]

t
* “By hand”, with approximations in small energy region ;;“} < 1, for vs < 30 GeV and
high energy approximation for v/s > 500 GeV Z,W



Precision Scattering: MOLLER

5 Theory Input: NLO and NNLO corrections
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Precision Scattering: MOLLER

Theory Input: NLO and NNLO corrections

The Next-to-Next-to-Leading Order (NNLO) EWC to the Born (~ MoM,*) cross section can be divided
Into two classes:

e Q-part induced by quadratic one-loop amplitudes ~ M;M,*, and
* T-part — the interference of Born and two-loop diagrams ~ 2ReM¢Mz2-j00p” .

3 5 3 4 N
0 = 5 |My+ M P = - (MoMy + 2ReMy Mg+ Mi M| = 00 + 0 +

Ve b

X ¥ X & X




Precision Scattering: MOLLER

Theory Input: NLO and NNLO corrections

For the orthogonal kinematics: 0 = 90°

TyPe O].c 0, Published
contrlbutlon Correction to PV asymmetry:
NLO -0.6953 PRD’10,YaF’ 12
+Q+ BBSE 5% ALn = ALr
_ ’ ’ 0
Vert VorRsE | 06420 PRD'I2,YaF'I3 AD
...+ double boxes  -0.6534 EPJ’ 12

Soft-photon bremsstrahlung cut:

w = 0.05+/s

..*NNLO QED  -0.6500

...+SE and Ver in
boxes

...*NNLO EW Ver under way

-0.6504 YaF' 15

¢

.... means all contributions from the lines above



Asymmetry [ppm]

Precision Scattering: MOLLER

Theory Input: NLO and NNLO corrections

Predicted PV asymmetry up to
NNLO:

Apy(C) = 94,96 (ppb)

Apy(LO+NLO+NNLO) . 33 2 (ppb)

0 [deg]



Precision Scattering: MOLLER

Theory Input: BSM Physics with Dark Vector

Consider a U(l)’ gauge symmetry which may interact with hidden sector particles:

Standard

Model

The gauge boson kinetic term (QED example):

L@ED _ _iAWAW (with A, = 9,4, — 0,A,)

kin

The A’ couples to SM particles through kinetic mixing of U(l)y & U(1)" [Holdom (1986)]:

1 € In general case A’ represents dark

1 1 ; .
Ly, = __BMVBFW + — BMVA’“V — _A;LVA,,L“/ photon. (pal.’lty-sons.ervmg) or |
4 2 cos Oy 4 Z’ (parity-violating) interaction carrier.

B, = cosOw A, —sinbwZ,

Expected size of kinetic mixing from loops of heavy fermions: € ~ (gv ga')/(16TT%) < 10-3



Precision Scattering: MOLLER

Theory Input: BSM Physics with Dark Vector

* Parity-conserving, dark vector boson (kinetic) mixing with photon produces:
Dark Photon

— e —
Lint = —eQefyuf - (A" + eA™) = —m o flefyu + hrprs) f - 2"

* Parity violating, dark vector boson (mass) mixing with photon and Z boson produces:
Dark Z’ Boson

H. Davoudiasl, et. al., arXiv:1203.2947v2, Phys. Rev. D 85, 115019 (2012).

_ e _
Lint = —eQefy,f - (A* + EA/M) _ g a— HWf(c“f/vu + Cfiﬂu%)f (ZM + GZ/A’M)

mz: : :
2" where & =3- 105 is an arbitrary model-dependent parameter

€z — 5
mz



Precision Scattering: MOLLER

Theory Input: BSM Physics with Dark Vector

New-Physics particles (Dark
Photon or Z’) in the loops

Calculation Strategy e
E
Complete the calculations of PV =z
MOLLER asymmetries including one- € .
loop (NLO) for the SM particles. This (1)
will define SM central value SM, NP

Proceed with calculations of PV € % e

asymmetries with hew physics
particles including one-loop and
construct exclusion plots for %
deviations from the SM central values. ©)

SM, NP SM, NP
SM, NP SM, NP

SM, NP SM,NP ¢

D




Precision Scattering: MOLLER

Theory Input: BSM Physics with Dark Vector

Exclusion plot for MOLLER using Z’ as a candidate for BSM physics Relative correction to € mixing parameter due to loops
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Precision Scattering: MOLLER

Theory Input: BSM Physics with Dark Vector

Sensitivity of the kinetic (€) and mass (d) mixing parameters to different masses of Z’ within 1% deviation from SM central value
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Conclusions

* Two electroweak PV experiments: Qweak (completed) and MOLLER (planned) are
complimentary to LHC search for BSM physics.

* With relatively large uncertainty arising from Y-Z boxes, Qweak results are in
agreement with SM predictions for weak charge of proton and neutron .

* MOLLER experiment is highly needed to put new constrains on weak charge of the
electron.

* Dark Vector BSM physics scenarios for Moller process have best sensitivity for Z'.

* The Z’ search in MOLLER is complimentary to (g-2),, where deviation with SM
predictions reach 3.60



