

Modeling the Leaching of ²²²Rn Daughters into the SNO+ Detector

Pouya Khaghani
Laurentian University
CAP 2015
June 17th

SNO+ Physics

- SNOLAB, Creighton Mine (2070m $\approx 6000 \ m.w.e$)
- Linear Alkyl Benzene (LAB)

Physics Goals:

- Neutrino-less double beta decay (¹³⁰Te-loaded scintillator)
- Low energy solar neutrinos
- Geo and reactor anti neutrinos
- Supernova neutrinos
- Nucleon decay (water phase)

Acrylic Vessel 12m diameter, Linear Alkyl Benzene (LAB) 780 tonnes

PSUP

~10,000 Photomultiplier tubes

Water shielding

-inner: 1700 tonnes -outer: 5300 tonnes

Backgrounds from the implanted radon daughters

4.27 MeV T = 4.47x10 v

> 0.26 MeV T = 24.1 d

- Scintillator target goal: $^{238}\text{U} \sim 10^{-17}\,\text{g/g}$ [1]
- Level of 222 Rn in the lab air $\sim 131 \pm 6.7$ Bq/m³ [2]
- Implanted radon daughters in the acrylic are a source of background for SNO+

^[1] M. Pallavicini, Nucl. Phys. B (Proc. Suppl.) 217,101–106 (2011)

^[2] Ian. T. Lawson, Radon Levels in the SNO+ Radon Reduction Room and Acrylic Vessel, SNO+ internal report, 2012

Leaching model of ²²²Rn daughters

- Question: How quickly will the surface contaminants leach into the liquid?
- Molecular leaching:
 first order process.

$$\frac{dN(t)}{dt} = -k(T) N(t)$$

• Temperature dependency:

$$k(T) = A e^{\frac{-E_a}{RT}}$$

Leaching rate measurements

- Bench-top measurements (spiked acrylic samples):
- \triangleright Activity of ²¹⁰Pb: high efficiency gamma counter (E=46.5 KeV)
- \triangleright Activity of ²¹⁰Po: Silicon alpha counter ($E_{\alpha} = 5.3 \text{ MeV}$)
- In-situ measurements of the activity.
 (All the measurements has been performed by Dr. Oleg Chkvoret.)

❖ Measurements were performed for different temperatures and into different media (UPW, LAB, Te+LAB, EDTA+UPW, etc.).

Nuclide	Temperature $[{}^{\circ}C]$	L.R.[1/day]	Δ L.R.[1/day]	$\tau[\mathrm{day}]$	$\Delta \tau [\mathrm{day}]$	Note
²¹⁰ Pb		2.2×10^{-3}	2.2×10^{-4}	455	45	
²¹⁰ Pb	25	2.0×10^{-3}	6×10^{-4}	500	150	Bottom of AV
²¹⁰ Po		2.1×10^{-3}	6.5×10^{-4}	476	143	
²¹⁰ Pb	12	4.8×10^{-4}	1.15×10^{-4}	2083	500	EDTA Wash
²¹⁰ Po	12	3.8×10^{-4}	5.78×10^{-5}	2632	400	EDIA Wash
²¹⁰ Pb	95	1.5	0.35	0.66	0.15	Spiked Aerylie
²¹⁰ Po	90	2	0.5	0.5	0.1	Spiked Acrylic

A tool has been developed to determine the amount of desorbed contaminants.

- Fitting the model to the data points.
- Interpolate the leaching rate according to the temperature and the nature of contaminant.
- Determine the amount of desorbed contaminant through the equations.
- Output: discrete data set of activity + generate a plot

- ➤ Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- > Bismuth and polonium are in equilibrium with lead.
- ➤ Initial Activity ~ 1.15 kBq

- ➤ Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- Bismuth and polonium are in equilibrium with lead.

Initial Activity ~ 1.15 kBq

i. 4 months UPW ($12 \,^{\circ}C$)

Pb in Acrylic
Pb in Liquid
Bi in Acrylic

Bi in Liquid

— Po in Acrylic — Po in Liquid

- ➤ Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- Bismuth and polonium are in equilibrium with lead.
- Initial Activity ~ 1.15 kBq
- i. 4 months UPW ($12 \,^{\circ}C$)
- ii. 5 months of UPW + (0.027M) EDTA $(12 \,^{\circ}C)$

Pb in Acrylic

Pb in Liquid
 Bi in Acrylic

Bi in Liquid

Po in Acrylic

Po in Liquid

- > Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- Bismuth and polonium are in equilibrium with lead.
- Initial Activity ~ 1.15 kBq
- 4 months UPW (12 $^{\circ}C$)
- 5 months of UPW + (0.027M) EDTA
- Water will be removed
- 6 months of liquid scintillator

Bi in Acrylic

- > Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- Bismuth and polonium are in equilibrium with lead.
- ➤ Initial Activity ~ 1.15 kBq
- 4 months UPW (12 $^{\circ}C$)
- 5 months of UPW + (0.027M) EDTA
- Water will be removed
- 6 months of liquid scintillator
- Liquid scintillator will be removed
- 5 years of Te-loaded scintillator

Pb in Acrylic

Bi in Acrylic

- > Ethylenediaminetetraacetic acid (EDTA) suggested to accelerate the leaching process.
- Bismuth and polonium are in equilibrium with lead.
- ➤ Initial Activity ~ 1.15 kBq
- 4 months UPW (12 $^{\circ}C$)
- 5 months of UPW + (0.027M) EDTA
- Water will be removed
- 6 months of liquid scintillator
- Liquid scintillator will be removed
- 5 years of Te-loaded scintillator

The activity of the radon daughters reduced by 90% in less than 3 years with the suggested timeline

Pb in Acrylic

Bi in Acrylic

Interpolation of the leaching constant for the water-fill

- Jan 27th-28th: water assay performed (water-fill since Oct 11th)
- The water level was monitored.
- Temperature was recorded: $T_{avg} = 18.4\,^{\circ}C$
- Using high efficiency gamma counter, specific activity of lead = $0.26^{+0.04}_{-0.04}$ Bq/m³

• The leaching constant for $18.4\,^{\circ}C$ was interpolated through the model.

Determination of desorbed lead during the water-fill

- Initial activity of the acrylic $\sim 2.3 \pm 0.8 \,\mathrm{Bg/m^2}$
- Leaching per unit area:

$$\frac{dC_a(t)}{dt} = -k(T)C_a(t) - \lambda C_a(t)$$
$$\frac{dC_w(t)}{dt} = k(T)C_a(t) - \lambda C_w(t)$$

$$\frac{dC_w(t)}{dt} = k(T)C_a(t) - \lambda C_w(t)$$

Calculated desorbed lead:

$$A = 0.155^{+0.088}_{-0.071} \,\mathrm{Bq/m^3}$$

 Total specific activity of desorbed lead through a summation over the water levels:

$$A(t) = \frac{\lambda}{V(t)} \sum_{1}^{t/\Delta \tau} C_w(t - i\Delta \tau) (h_{i+1} - h_i). 2\pi R$$

Subtract the removed water (lead)

Other sources of ²¹⁰Pb in water

- Lead concentration in a blank sample of UPW
- \blacktriangleright Water plant assay (August 2014) \rightarrow $A=0.047\pm0.010$ mBq/m³ (negligible)
- Diffusion of the radon in the lab air into the water
- Radon level inside the acrylic vessel $\sim (0.6703 \pm 0.0026) \times (131 \pm 6.7)$ Bq/m³
- Partition coefficient of 222 Rn between UPW and air at $18.4\,^{\circ}C$ $\kappa=0.266$
- Fick's Law: $\frac{\partial C(z,t)}{\partial t} = D \Delta C(z,t)$

$$C_w(z,t) = \kappa C_{air} \left(1 - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)} e^{\left(-2(n+1)^2 \pi^2 \frac{Dt}{4h^2}\right)} \sin \frac{(2n+1)\pi z}{2h}\right)$$

$$A(z,t) = \int C_w(z,t) \, dV$$

Radon diffusion into water

• Total activity of the diffused radon into water: $A_w(t) =$

$$A_w(t) = \sum_{i=0}^{i=t/\Delta\tau} \int_0^{h_i} C_w(z,t) S(z) dz$$

Radon concentration in water

Radon diffusion into water

- $i=t/\Delta \tau h_i$ • Total activity of the diffused radon into water:
- Generated a discrete data set to determine the amount of produced lead.

Lead concentration from the radon in air

Conclusion: The leaching model works!

- Specific Activity of produced lead from the diffused radon in UPW: $A = 0.012^{+0.003}_{-0.001} \, \text{Bg/m}^3$
- Desorbed lead + lead from air: $A_{calculated} = 0.169^{+0.085}_{-0.073} \text{ Bq/m}^3$
- Measured lead from the water assay: $A_{measured} = 0.26^{+0.04}_{-0.04} \text{ Bg/m}^3$
- Calculated Activity is compatible With measured value to within 1 sigma.
- Diffusion of ²²²Rn from air into water is complicated due to the temperature gradient from the bottom of AV.

Thanks for your attention...

Special thanks to the SNO+ collaboration...

Questions?

Muon Cherenkov light observed during the dark run on December 2014...

Backup EDTA

- Ethylenediaminetetraacetic acid (EDTA) was suggested to accelerate the leaching rate.
- Has no effect on the leaching rate of ²¹⁰Bi and ²¹⁰Po
- UPW+ EDTA (0.25M) accelerates the leaching process of ²¹⁰Pb by factor of 30

Backup (Radon diffusion)

 Radon diffusion as a function of depth

