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2D electrons + SOC 

Objective

Solids: 
Spin degeneracy = time-reversal + 
spatial inversion symmetry 

SOC breaks inversion symmetry, 
but preserves TR 

Spin-split spectrum

e.g. Oxide interfaces

Ultracold atoms: 
2-photon Raman transitions 
(momentum-dependent spin 
transitions)

Tunable SOC



Applications 

Spintronics: Manipulate spin without 
magnetic field 

Quantum spin Hall effect 

Topological Insulators

Objective



2D electron gas + SOC + Repulsive interactions

What kind of order (symmetry breaking) occurs in dilute 
limit of this system? 

Objective

Kinetic energy scales as 1/r2

Coulomb energy scales as 1/r

So interactions might induce order at low densities (Wigner 
Crystal). But what about more general interactions?
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Rashba 2DEG Model

Dilute limit of an interacting spin-orbit coupled two-dimensional electron gas
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We want to solve the problem of a two-dimensional electron gas (2DEG) with Rashba spin-orbit

coupling and repulsive electron-electron interactions in the limit that the carrier density goes to

zero. To study this regime, we will try to solve exactly the two-particle problem (since with only

one particle we cannot see the e↵ect of interactions).

The goal is to solve exactly the Schrödinger equation for two particles. We will first try to see if we can meaningfully
solve the continuum problem (interacting Fermi gas), and if not (or maybe in addition to) we will solve a Rashba-
Hubbard model on the square lattice.
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We will first consider a generic density-density interaction term, which in real space reads
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Rashba term “spin-splits” the free particle spectrum
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The integral is formally divergent for finite energy. This is a product of the singular nature of the contact interaction
we started with, which should be renormalized to give a physical interaction. For now, we impose a UV momentum
cuto↵ ⇤, so that we have

�1

mṼ
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Density of states exhibits Van Hove singularity 
at band bottom

Rashba 2DEG Model
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mṼ1 =

����1�
⇤2/m

E
1

���� (121)

E
0

= �1

2
m�2 (122)

13

where ↵ ⌘
R1
0

�̃1

10

(p)dp. Plugging (118) into the definition of ↵ gives a self-consistency condition.

1 = �2Ṽ
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Enhanced low energy DOS suggests instability 
to formation of new phases. 

Perhaps we can get ordered phases even with 
short range interactions?

Rashba 2DEG Model
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Rashba 2DEG Model

Enhanced interactions can cause ordering in 
the vibrational motion of electrons

E.g.
y

x



Rashba 2DEG Model

Enhanced interactions can cause ordering in 
the vibrational motion of electrons

kx

kyE.g.
y

x

which means the ground state shows 
clustering around wave vectors in the band 
bottom



Rashba 2DEG Model

Two possibilities of interest. 

1) Nematic: Invariant under 
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Two possibilities of interest. 

2) Ferromagnetic Nematic: Invariant under 
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mṼ1 =

����1�
⇤2/m

E
1

���� (121)

R
⇡

(122)

T R
⇡

(123)

E < 0 (124)

D(E) =
4⇡m�p

�2 + 2E/m
(125)

kx

ky

kx

ky

13

where ↵ ⌘
R1
0

�̃1

10

(p)dp. Plugging (118) into the definition of ↵ gives a self-consistency condition.

1 = �2Ṽ
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The full Hamiltonian is diagonal in jz. 

Should be able to characterize symmetry breaking 
according to jz eigenvalues. 

Nematic: jz = 2 

Ferromagnetic nematic: jz = 1 

Isotropic: jz = 0

Rashba 2DEG Model



Perhaps the physics of the ultra-dilute regime is 
captured by a 2-electron system. 

Want to describe with jz eigenstates in singlet-
triplet basis 

2-electron case

3

The most general two-particle state is written as
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III. RASHBA-HUBBARD MODEL

In this case, the presence of a lattice will break the full SO(2) rotation symmetry to the discrete point group
symmetry of the lattice. On a square lattice we should have a residual C
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IV. THERMODYNAMIC LIMIT CONTINUUM CASE

We begin with an infinite continuous system. The two-body hamiltonian has translation symmetry, so the momen-
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p is now the relative momentum



Antisymmetry of the wavefunction splits even and 
odd jz states. 

The Hamiltonian in this basis has even and odd jz 
sectors:

2-electron case

4
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mṼ
1

= ln

����
⇤2

m
� E

1

����� ln |� E
1

| (120)

)e
�1
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mṼ
1

= ln

����
⇤2

m
� E

1

����� ln |� E
1

| (120)

)e
�1
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What are the asymptotic states in the 2-particle 
Rashba problem? 

Eigenstates of the non-interacting position space 
Schrodinger equation:

Interactions
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Eigenfunctions are linear combinations of Bessel 
functions

Interactions
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1

Z 1

0

p0dp0

p02/m� E
1

. (119)

The integral is formally divergent for finite energy. This is a product of the singular nature of the contact interaction
we started with, which should be renormalized to give a physical interaction. For now, we impose a UV momentum
cuto↵ ⇤, so that we have

�1

mṼ
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Compare large r expansions with the usual cosine 
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Logarithmic derivative of solution inside 
interaction range

Interaction range



Summary 

• Spin orbit coupling can enhance effects of 
interactions, which may cause tendency to order 
at low energies. 

• Nematic and Ferromagnetic nematic symmetry 
breaking can be characterized by jz eigenvalues 

• Fermion antisymmetry splits jz even and odd sectors 
• Scattering theory can be modified to find phase 

shifts for SOC asymptotic states 

Future Work/ Summary

The program now: 

Phase shifts           T matrix           Vertex part           Susceptibility
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