HALO

Supernovae

- When the inert iron core of a star reaches 1.4 solar masses, it collapses
- 99% of the released energy is in the form of neutrinos

Detector

HALO consists of an array of helium-3 counters in 79 tons of lead shielded by water and plastic

Lead

³He Counters

Calibration Tube

Water, Plastic

HALO has complementary flavour sensitivity to other neutrino detectors

- Liquid scintillator detectors:
 - LVD
 - Borexino
 - KamLAND
 - Daya-Bay
 - Sno+

• Water cerenkov detectors:

- Super-K

Lead detector:

Neutrino Detection

82 Pb 207.2 <2.2 eV/c²

electron neutrino

Neutrons can easily be distinguished from gamma rays

- Gamma rays only deposit small amounts of energy in the He3 counters
- Neutron captures deposit 764keV: $n + {}^{3}He \rightarrow p + t$
- Some of this energy can escape detection if the capture is very close to the wall of the counter

HALO has been consistently taking data

- 95% duty factor since September 2012
- Live time factor will remain high now that almost all components are installed.
- Small intermittent interruptions may continue due to power shutdowns but they will get shorter once shutdown and start-up of halo is automated.

HALO Detector Live Time Between 4/9/2012 and 1/6/2015

HALO's neutron coincidences have been behaving as expected

- Coincidence trigger threshold: 4 nongamma events within 2 seconds
- Neutron background could come from the lab walls (single neutrons) or uranium decay inside the detector (some multiplicities > 1)
- After cutting out gamma events, HALO counts 6739 events per day → Expect 3.65 random coincidences per day from single-n sources.
- Found 189 over 54.4 days: Expected 198.6 +- 14.1
- This confirms that uranium spontaneous fissions are not a problem for the supernova trigger.

Spallation events have been behaving as expected

- 14 spallation events in 2015: 1 per 10 days
- Spallation events consistently end very quickly
- The spread of counts in the detector is more closely grouped than other sets of captured neutrons

Expected RMS for homogenous neutrons: 830mm

²⁵²Cf can precisely measure the neutron capture efficiency of HALO

- Californium gives off bursts of neutrons with multiplicities up to 8
- The detected shape of the distribution measures the neutron capture efficiency
- The calibration will be completed this summer

HALO covers most of the Milky Way

Current neutron rate: 6350 +- 10 per day (0.0735n/s)

Setting 6 neutrons in 2 seconds as a supernova candidate gives 1.17 random triggers per year

Neutron rate will be lowered when front shielding is put in place.

- Detection range depends on threshold and detection efficiency
- Detection range with capture efficiency 0.3, threshold of 6 neutrons: 14.7 kpc (48.1 kly)
- Detection range with capture efficiency 0.4, threshold of 6 neutrons: 16.9 kpc (55.1 kly)

We are currently considering an opportunity to create a kiloton scale lead supernova detector! Contact civ@snolab.ca for details.

The HALO Collaboration HA

TRIUMF

- ¹ Laurentian University, Sudbury, ON P3E 2C6, Canada
- ² Digipen Institute of Technology, Redmond, WA 98052, USA
- ³ SNOLAB, Sudbury, ON P3Y 1M3, Canada
- ⁴ University of Minnesota Duluth, Duluth, MN 55812 USA
- ⁵ Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ⁶ University of North Carolina, Chapel Hill, NC 27599, USA
- ⁷ University of Washington, Seattle, WA 98195, USA
- ⁸ Duke University, Durham, NC 27708, USA
- ⁹ Armstrong State University, Savannah, GA 31419, USA
- ¹⁰ TU Dresden, D-01062 Dresden, Germany
- ¹¹ ICCR, University of Tokyo, Kamioka Observatory, Japan
- ¹² TRIUMF, Vancouver, BC V6T 2A3, Canada

Funded by:

halo.snolab.ca