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Abstract

Quantum gravity effects modify the Heisenberg’s uncertainty principle to the

generalized uncertainty principle (GUP). Earlier work showed that the GUP-induced

corrections to the Schrödinger equation, when applied to a non-relativistic particle in

a one-dimensional box, led to the quantization of length. Similarly, corrections to the

Klein-Gordon and the Dirac equations, gave rise to length, area and volume quanti-

zations. These results suggest a fundamental granular structure of space. This thesis

investigates how spacetime curvature and gravity might influence this discreteness of

space. In particular, by adding a weak background gravitational field to the above

three quantum equations, it is shown that quantization of lengths, areas and volumes

continue to hold. Although the nature of this new quantization is quite complex,

under proper limits, it reduces to cases without gravity. These results indicate the

universality of quantum gravity effects.
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Chapter 1

Introduction

1.1 Prologue

Quantum field theory describes the behavior of the fundamental constituent parti-

cles and the fields. General relativity, on the other hand, treats one of the fundamental

forces, gravity as a derived effect of spacetime curvature and explains the large scale

dynamics – from planetary and galactic motions to black hole physics and in general

the evolutionary history of the universe. The two theories are successful in their own

realms, but they are not really mutually compatible. Einstein’s formulation is essen-

tially a deterministic approach. Although it governs the force of gravity, it cannot be

applied the same way to explain gravitational field as the Standard Model does to

the three other fundamental forces of nature, electromagnetic, strong and weak.

Moreover, the presence of mathematical difficulties like singularities in the Feyn-

mann diagrams, renormalization failure etc. [1] [3] in quantum field theory clearly

indicates that a more general formalism is required in order to explain all of the

fundamental forces together.

Hawking Radiation [2] can be considered as an example that, despite being an

area more relevant to the general relativity, explained better with quantum mechanics

in curved spacetime. Rotating and Reissner–Nordström black holes, for example, are

expected to emit photons and other particles according to quantum mechanics, the

dynamics of which are well comprehended by general relativity. Although a direct
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signature is yet to be found, this prediction has also been supported by analog gravity

experiments [14].

Observational evidence like this along with the technical problems with having

two distinct theories suggests a necessity for a successful unification, in other words,

a quantum theory of gravity.

There are a few candidates for a successful quantum gravity theory. String theory,

Loop quantum gravity and Causal set theory are among the most promising ones.

Here is a brief review of these theories.

1. String Theory – this mathematically rigorous theory has a rather simple un-

derlying concept. From the early age of the development of physics, reductionism

has always played the driving force of active research. We expect to find simpler

things as we go deeper. Macroscopic objects to molecules, molecule to atoms, atom

to its constituent particles - reductionism has always worked. Apparently dissimilar

forces boil down to four fundamental forces. Problem occurs beyond this point, when

a unification of these forces was much sought. Standard model required even many

more particles to explain the intrinsic nature of the fundamental forces, and the old

reductionism started to fail. At this point, it appeared string theory came up with a

much-simplified idea of having all fundamental particles either force carriers (bosons)

or that make matter (fermions) as different modes of vibration of the same string. A

string can be a closed loop, which typically represents bosons, or open-ended which

represents fermions [4].

String theory also introduces the concept of D-branes. A brane is a 2-dimensional

membrane or analogous object in lower or higher dimensions. A D-brane or a

Dirichlet-brane is a higher dimensional brane such that the two ends of open-ended

strings are attached to either one single D-brane or two different D-branes [5]. Clearly

this restricts how an open-ended string can vibrate. One of the vibrations can be as-
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sociated with the gravitational field. In short, string theory appears to solve the

problem of merging gravity with standard model, at least theoretically [6].

Problem with string theory is that the predictions are extremely difficult to test.

For example, String theory predicts for the existence of 9+1 dimensions. This re-

quires postulating six additional unobserved spatial dimensions which is not quite in

agreement with the current experimental evidence.

2. Loop Quantum Gravity(LQG) – the leading alternative to string theory is

loop quantum gravity. This approach uses the principles of general relativity as its

starting point in an effort to quantize both space and time. The basic consideration

of LQG is a granular structure of space which can be viewed as a network of finite

quantized loops of size of Planck length. This network is technically known as a

spin network, the time evolution of which is called a spin foam. These fine loops are

thought to be excited gravitational fields. Unlike string theory, loop quantum gravity

does not head for a theory of everything. It mainly aspires to solve the problem of

quantum gravity, with having the advantage over string theory by not looking for

higher dimensions. A length quantization similar to what we are going to present in

this thesis has been shown in LQG [9].

The biggest flaw in loop quantum gravity is that it is not possible to show that a

smooth spacetime can be extracted out of a quantized space. Also, like string theory

the predictions of LQG are not quite testable yet [7].

3. Causal Set Theory – This approach is based on the assumption that the space-

time is fundamentally discrete and there is a one-to-one map between distinct past

and future events [8]. The consequence of the causal set hypothesis is technically

known as the dynamics of sequential growth. This theory identifies time as a birth

process of consecutive spacetime events, also called the elements of causal set [10].
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It is debatable that an initial assumption of discreteness of spacetime in any the-

ory might have a conflict with Lorentz invariance. Causal set is able to address to

this problem [11]. Despite being in an early stage of development, causal set theory

successfully predicted the fluctuations in the value of the cosmological constant [10].

Although the dynamics has made progress, a complete theory is yet to come.

1.2 Quantum Gravity Phenomenology

1.2.1 Why Phenomenology

People have been working towards quantum gravity for over 70 years. All quan-

tum gravity theories start with assumptions about the structure of spacetime at scales

that are extremely small, way beyond the current experimental advancement. Be-

cause there is no direct experimental guidance, it is quite natural to try to develop

a correct theory based on indirect criteria of conceptual restrictions. Like any other

active field, what Quantum Gravity Phenomenology ideally needs is a combination of

theory and doable experiments. At the moment, Quantum Gravity Phenomenology

(QGP) can be thought of as a combination of all the studies that might contribute

to direct or indirect observable predictions [12] [13] and analog models [14] support-

ing small and large scale structure of spacetime consistent with string theory or any

other working formalism of quantum gravity. In this thesis we are more interested in

the small scale structure of the spatial dimensions in connection with quantum gravity.

1.2.2 Goals of Quantum Gravity Phenomenology

The first step to identifying the relevant experiments for quantum gravity research

would be the identification of the working scale of this new field. String theory

suggests the characteristic scale where the quantum properties of spacetime become

significant compared to the classical ones is the Planck scale which is Ep ∼ 1028eV
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or the Planck length `Pl ∼ 10−35 m [15]. This is a difficult part of quantum gravity

phenomenology, i.e., to find ways to detect this very small scale quantum properties

of spacetime. The solution of the quantum gravity problem should also be able to

address the quantum picture of particles in the presence of weak as well as strong

gravity. In other words, we hope quantum gravity phenomenology will helpful towards

grand unification.

The validity of the Equivalence Principle in quantum gravity was first discussed in

the mid 1970s with the famous ”COW” experiment [16]. Experiments and modifica-

tion involving the dynamics of matter in earth’s gravitational field triggered question

on the legitimacy of the Schrödinger equation [17]

[
−
(

~2

2MI

)
∇2 +MGφ(~r)

]
ψ(t, ~r) = i~

∂ψ(t, ~r)

∂t
, (1.1)

where MI denotes inertial mass and MG denotes gravitational mass, φ(~r) is gravita-

tional potential.

There are no experiments that suggest the inertial and gravitational masses are dif-

ferent on earth. This might indicate a modification in the Schrödinger equation.

String theory suggests a modification in the commutation relation between position

and momenta, which leads to a modified Schrödinger’s equation [32] as well.

One of the basic aims of quantum gravity phenomenologists is to find a way to

test Planck-scale effects of spacetime, which also means providing with boundaries for

the theoretical framework (within which a proper quantum theory of gravity is to be

developed) and information on what is compatible with experimental data. This is

particularly important as the phenomenology is still in its early stage of development.

In this thesis, we will focus on one such experimental limit suggested by quantum

gravity phenomenology which is also consistent with one of the candidate theories,
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viz., string theory. We will show how quantum gravity changes the classical idea of

the spacetime continuum, by making the space around us discrete.

1.2.3 Uncertainties within Quantum Gravity

Since classical gravity is considered as a derived effect of deformation of spacetime,

let us consider the case of distance fuzziness [17], an effect expected within quantum

gravity. This also directly relates to the very basic principle of quantum mechanics,

i.e., the uncertainty principle. Although the distance operator is affected by inherent

uncertainties, usual quantum theory allows us to measure it exactly at the cost of

complete obscurity of the conjugate observable (momentum). On the other hand, in

the realm of quantum gravity, distance is likely to be subject to uncertainties that

are not reducible. This uncertainty is often denoted by δD ≥ `Pl, which means the

minimum variation in the distance measurement is of the order of Planck length.

Some phenomenologists prefer to use a more general version, δD ≥ f(D, `Pl), where

f is a function such that f(D, 0) = 0 [17].

The above idea of QGP-induced uncertainty might also suggest a modification

in the usual Heisenberg’s uncertainty principle, and incidentally string theory also

suggest a similar idea of modified uncertainty principle which in fact goes by the

name of Generalized Uncertainty Principle (GUP).

1.3 Generalized Uncertainty Principle from String Theory: Discreteness

of Space

In a way, the motivation for quantizing gravity comes from the remarkable success

of the quantum theories of the three other fundamental forces of nature and their

interactions. Also, if not direct, experimental evidence suggests that gravity can

show quantum effects. Analogue gravity experiments are among them [14].
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String theory has emerged as the most promising candidate for a quantum theory

of gravity. Among the many stringent mathematical results of string theory the one,

which is of particular interest and relevant to quantum gravity phenomenology, is

a modification of one of the basic principles of quantum mechanics, the uncertainty

principle. The form string theory suggests is ∆x ≥ ~
∆p

+ α
′ ∆p
~ [18–25], where

√
α′ ≈

10−32cm [1].

Recently proposed doubly special relativity theories (DSRs) suggest a similar

modification of position-momentum commutation relation [26–28] which leads to a

modification of the uncertainty principle as well. A suggested form of commutator

consistent with string theory is [12]

[xi, pj] = i~
(
δij − α

(
pδij +

pipj
p

)
+ α2(p2δij + 3pipj)

)
, (1.2)

where p2 =
3∑
i=1

pipi, α = α0/MPlc = α0`Pl
~ ,

MPl = Planck mass, `Pl = Planck length, MPlc
2 = Planck energy. So p can be

interpreted as the magnitude of ~p.

Then we get a Generalized Uncertainty Principle (GUP) [29–31],

∆x∆p ≥ ~
2

[
1− 2α < p > +4α2 < p2 >

]
≥ ~

2

[
1 +

(
α√

< p2 >
+ 4α2

)
∆p2 + 4α2 < p >2 −2α

√
< p >2

]
. (1.3)

Here, the dimensionless parameter α0 is assumed to be of the order of unity.

Hence, modifying the position and momentum operators accordingly and applying

this to a non-relativistic situation where a particle is trapped in a one-dimensional

box one can find the GUP-corrected Schrödinger equation. It has been shown that

the solution to this new equation gives rise to the result that the length of the box can
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assume certain values only [32]. This result suggests that although the space looks

smooth to us it the structure of so-called spacetime continuum, at Planck scale, is

complex. We will discuss these results in the next section.

As discussed before (section 1.2.3), quantum gravity phenomenology indicates

an irremovable uncertainty in distance measurement. String theoretic modified com-

mutation relation of position and momentum operators results in the generalized

uncertainty principle which has a similar, but subtler consequence that the appar-

ently continuous-looking space on a very fine scale is actually grainy. One can ask

whether this is a sole influence of gravity or a fundamental structure of the space-

time. Now, if we admit the fact that classical gravity is a derived effect of curvature of

spacetime caused by mass, we expect to find this discontinuity even in the regions of

the universe far from a massive object, if the granular structure of the spatial dimen-

sions is fundamental. The nature of this discreteness may or may not change when

the spacetime is no more flat, i.e., in the presence of a gravitational field. In order to

investigate that, we use a bottom-to-top approach as the geometry of spacetime is a

manifestation of gravity as well. In our analysis (chap 2 and 3), we trap a particle in

a box with a gravitational potential inside the box and see if gravity influences the

discreteness shown in [32,33].

1.4 Discreteness in Flat Spacetime

1.4.1 Non-relativistic case

Now we briefly review the solved case of a particle in a box without the influence

of gravity [32].

The modified position and momenta operators consistent with Eq.(1.2) and (1.3) are
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given by,

xi = x0i, pi = p0i(1− αp0 + 2α2p2
0), i = 1, .., 3. (1.4)

Here, x0i, p0i satisfy the old canonical commutation relation [x0i, p0i] = i~δij, which

makes p0i = −i~ ∂
∂x0i

the usual momentum (operator) at lower energy and pi as mo-

mentum at higher energy. Like p, p0 can be defined similar way, given by p2
0 =

3∑
i=1

p0ip0i

[32].

We see, the α dependent terms in all the above equations are only important when

energies are comparable with Planck energy and lengths are comparable with the

Planck length.

Following the above prescription, a usual Hamiltonian of the form H = p2

2m
+V (−→r )can

be written as

H =
p2

0

2m
+ V (−→r )− α

m
p3

0 +O(α2). (1.5)

(1.6)

The extra term in the above Hamiltonian can be viewed as a perturbation caused by

Quantum Gravity effects which holds for any classical or quantum system. Now, if we

consider a single test particle in one-dimensional box of length L, boundaries being

at x = 0 and x = L, such that V (−→r ) = V (x) = 0 inside the box and V =∞ outside,

we can write the usual Schrödinger equation Hψ = Eψ in the following form,

d2

dx2
ψ + k2

0ψ + 2iα~
d3

dx3
ψ = 0, (1.7)

where k0 =
√

2mE/~2. This is the GUP-corrected version of the Schrödinger equation

for a particle in a one-dimensional box.
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Let us consider a trial solution of the form ψ = emx. Using this trial solution the

above equation becomes

m2 + k2
0 + 2iα~m3 = 0 (1.8)

It can be shown that this equation has the solution set to the leading order in α given

by m = ik
′
0,−ik

′′
0 , i/2α~, where k

′
0 = k0(1 + k0α~) and k0

′′ = k0(1− k0α~) [32].

The general solution to the GUP-corrected Schrödinger equation in flat spacetime is

thus given by,

ψ = Aeik
′
0x +Be−ik0

′′x + Ceix/2α~ (1.9)

If we impose the boundary conditions the first two terms, with k
′
0 = k

′′
0 = k0, lead to

the usual quantization of energy. It is to be noted that limα→0 |C| = 0 because the

last term should drop out in the α → 0 limit. This and making A real by absorbing

any phase in ψ, under the boundary condition ψ(0) = 0 yield,

A+B + C = 0. (1.10)

Substituting B from the above in Eq.(1.9),

ψ = 2iA sin(k0) + C
[
−e−ik0x + eix/2α~

]
− α~k2

0x
[
iCe−ik0x + 2A sin(kx)

]
(1.11)

The other boundary condition ψ(L) = 0 gives,

2iA sin(k0L) = |C|
[
e−i(k0L+θC) − ei(L/2α~−θ0)

]
+

α~k2
0L
[
i|C|e−i(k0L+θC) + 2A sin(k0L)

]
, (1.12)

10



where C = |C|e−iθC . It is easy to notice that both sides of Eq. (1.12) vanish in the

limit α −→ 0, when k0L = nπ, n is an integer and C = 0 which in turn means when α

is not zero k0L must be equal to nπ plus a small real number ε0, where limα−→0 ε0 = 0.

Also the term containing α|C| on the RHS of Eq.(1.12) has a faster convergence to

zero in the same limit compared to O(α) so it can easily be ignored. Now, collecting

real parts of the rest of the equation and considering sin(nπ + ε0) ≈ 0 we get [32]

cos

(
L

2α~
− θC

)
= cos(k0L+ θC) = cos(nπ + θC + δ0)

(1.13)

which implies

L

2α~
=

L

2α0`Pl
= nπ + 2qπ + 2θC ≡ pπ + 2θC (1.14)

L

2α~
=

L

2α0`Pl
= −nπ + 2qπ ≡ pπ, (1.15)

where p ≡ 2q ± n is a natural number.

The above equations clearly show that L is a quantized quantity. This result can

be interpreted as the fact that, like the energy of the particle inside the box, the

length of the box can assume certain values only. In particular, L has to be in units

of α0`Pl.

This indicates that the space, at least in a confined region and without the influence

of gravity, is likely to be discrete.

1.4.2 Relativistic one-dimensional case

Further work has shown that this consequence of the GUP can be extended to
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relativistic scenarios in one, two and three dimensions [33]. There are several reasons

for why we need relativistic cases. High energy particles are much more likely to

probe the fabric of spacetime near the Planck scale, which means they are necessarily

relativistic and ultra-relativistic particles. Also, the fact, that most elementary par-

ticles are fermions, replaces the Schrodinger equation with the Dirac equation.

We need the Klein-Gordon equation which is the simplest equivalent of the

Schrödinger equation for such relativistic particles. For our one-dimensional box,

the Klein-Gordon equation

p2Ψ(t, x) =

(
E2

c2
−m2c2

)
Ψ(t, x). (1.16)

It is easy to see that this is identical to the Schrödinger equation, by making the

connection: 2mE/~2 ≡ k2
0 → E2

~2c2 −
m2c2

~2 . By arguing that the quantization of length

of the box does not depend on k0, we can safely deduce that the same would apply

to this case as well [33].

For a higher dimensional case, we no longer use the the Klein-Gordon equation for

the non-locality of the differential operators [33]. Instead, we use the Dirac equation,

the other reason being the fact that most of the fundamental particles are fermions.

Thus, it is worthwhile to investigate how the discreteness of space changes under the

Dirac equation even if we restrict ourselves to one dimension.

Using the Dirac matrix notations, the GUP-corrected Dirac equation is written as,

Hψ(~r) = (c~α.~p+ βmc2)ψ(~r)

= (c~α.~p0 − cα(~α.~p0)(~α.~p0) + βmc2)ψ(~r).

= Eψ(~r). (1.17)
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For one spatial dimension, z for example, in position representation, this becomes

(
−i~cαz

d

dz
+ cα~2 d

2

dz2
+ βmc2

)
ψ(z) = Eψ(z). (1.18)

The two linearly independent, positive energy solutions to the above equation are

given by [33],

ψ1 = N1e
iκz

 χ

rσzχ

 (1.19)

ψ2 = N2e
iz/α~

 χ

σzχ

 , (1.20)

where κ = κ0 + α~κ2
0, κ0 being the wave number that satisfies E2 = (~κ0)2 +

(mc2)2, r = ~κ0c
E+mc2

and χ†χ = I.

Using the MIT bag model and imposing boundary conditions on the two wavefunc-

tions, the following relations can be established [33],

κL = δ = arctan

(
− ~κ
mc

)
+O(α), (1.21)

L

α~
=

L

α0`Pl
= 2pπ − π

2
, p ∈ N. (1.22)

Eq.(1.21) gives the energy quantization and Eq.(1.22) is the condition for length

quantization for relativistic situations. It can be shown that the non-relativistic

limit of this equation gives the quantization condition that was obtained from the

Schrödinger equation in the previous section.

1.4.3 Relativistic two and three-dimensional cases

As mentioned before, we use the Dirac equation when two and three dimensions

are considered. If we define the box under consideration by 0 ≤ xi ≤ Li, i=1,..,d

13



where d can be 1, 2 or 3 depending the the dimension of the box, and assume the

following form of the wavefunction

ψ = ei
~t.~r

 χ

r~ρ.~σχ

 , (1.23)

where ~t and ~ρ are two spatial vectors of dimension d and χ†χ = 1, the Hamiltonian

given by Eq.(1.17) becomes,

Hψ = ei
~t.~r

 (
(mc2 − cα~2t2) + c~(~t.~ρ+ iσ.(~t× ~ρ))

)
χ(

c~~t− (mc2 + cα~2t2)~ρ
)
.~σχ

 (1.24)

and the two linearly independent (for a particular spinor χ) and positive energy

solutions follow [33],

ψ1 = N1e
i~κ.~r

 χ

rκ̂.~σχ

 (1.25)

ψ2 = N2e
i q̂.~r
α~

 χ

q̂.~σχ

 . (1.26)

Note that ψ2 is the non-perturbative solution comes to existence because of GUP. This

new wavefunction gives rise to an additional condition which yields the quantization

of length along each direction the box independently [33],

kkLk = δk = arctan

(
−~kk
mc

)
+O(α) (1.27)

|q̂k|Lk
α~

=
q̂kLk
α0ellPl

= 2pkπ − 2θk, pk ∈ N (1.28)

where k is the index corresponding to the axis of consideration, q̂k is the kth com-

ponent of the unit vector q̂ along ~ρ and θk = arctan(q̂k). Eq.(1.27) gives the energy
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quantization for d dimensions when we have d such equations for k = 1, .., d. Eq.(1.28)

yields the length quantization along xk axis. |q̂k| = nk√∑d
i=1 n

2
i

. If we consider the sym-

metric case where no direction in space is preferred, n1 = n2 = ... = nd, we get

|q̂k| = 1√
d
, d = 1, 2, 3; in which case Eq.(1.28) becomes

Lk
α0`Pl

= (2pkπ − 2θk)
√
d, pk ∈ N. (1.29)

It is easy to see if we set d = 1 (one-dimensional case), 2θk = arctan(1) = π
2

and the

above equation reduces to Eq.(1.22). Moreover, we obtain area (N=2) and volume

(N=3) quantization from Eq.(1.29) as below [33],

AN =
N∏
k=1

Lk
α0`Pl

= dN/2
N∏
k=1

(2pkπ − 2θk), pk ∈ N. (1.30)
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Chapter 2

Discreteness of Space from GUP : Non-relativistic Case

2.1 Discreteness of Space in Presence of Gravity

So far, it has been shown the GUP effects imposed on free particles, lead to

discreteness of space. Although our test particle was kept in a box, presence of any

force field inside the box was not assumed. If we wish to claim that the quantum

gravity effects are universal we hope to see the length quantization valid for any

situation in presence of any force. Also, the results must not be limited to the Dirac

equation, i.e., for fermions only. One must expect to have similar length area and

volume quantization in context with bosons as well. In other words, discreteness of

space must hold whether or not there is an external field present.Although, in this

thesis we restrict ourselves to fermions.

The first step towards this generalization is to consider gravity as the external

force field inside our box, since it is the weakest among the four fundamental forces and

also gravity is universal. Also, as we have discussed in sec 1.3, our particular interest

is to find how gravity determines the nature of discreteness. With a gravitational

potential present inside the box, we ignore all but the first term of Taylor expansion

of the potential, which is linear. This is reasonable because we are interested in the

behavior or spacetime fabric near Planck scale and gravitational potential changes

only at a very slow rate, over such small distances .

In practice, we often use the gravitational potential energy approximated as V (h) =

16



mgh over a small vertical distance h and the field Eh = − 1
m
∂dV (h)
∂dh

= −g. This justifies

the previous claim of using a linearized potential term as well.

First, we consider a toy model – a particle in a one-dimensional box with a linear

potential inside. We do not wish to involve GUP here. This is a case of the usual

Schröginger equation with a potential. The intension is to use this solution in the

actual problem with GUP.

In order to show discreteness of space in the presence of gravity we start with

the simplest case of a particle in a one-dimensional box. We will show that the new

solution to the Schrödinger equation will reduce to the usual solution under proper

limits.

This is a case without incorporating the GUP. We intend to use this as a model

for solving the actual problem. So, the Schrödinger equation has its usual form [34],

with a potential term.

2.2 Solution of Schrödinger Equation with a One-dimensional Linear Po-

tential

Let us consider a one-dimensional box of length L with a linear potential inside,

which has the form

V (x) =

 kx if 0 ≤ x ≤ L

∞ otherwise.
(2.1)

k is a parameter of unit J/m. Smallness of k is assumed.

The Schrödinger equation governing the motion of a particle of mass m inside the

box (0 ≤ x ≤ L) [34],

d2ψ(x)

dx2
− 2m

~2
(kx− E)ψ(x) = 0 . (2.2)
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Figure 2.1: Airy functions and the zeroes [35]

ψ(x) = 0 when x < 0 or x > L because the potential outside the box becomes ∞.

The above is an Airy equation which has the exact general solution given by [35],

ψ(x) = C1Ai

[
2m
~2 (kx− E)

(2m
~2 k)

2
3

]
+ C2Bi

[
2m
~2 (kx− E)

(2m
~2 k)

2
3

]
, (2.3)

where Ai[u] and Bi[u] are Airy functions of the first and second kind respectively. We

plan on using this wavefunction for solving the GUP-corrected Schrödinger equation

for a particle in a box with a linear potential.

Before proceeding, we need to verify that this wavefunction reduces to the solution

corresponding to old Schrödinger equation for an infinite potential well, if we let the

potential factor k go to zero.

For a weak potential we can assume : E > V (x)

Using the WKB approximation methods, we get

∫ L

0

p(x) dx = nπ~ (n = 1, 2, 3, ...), (2.4)
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where p(x) ≡
√

2m[E − V (x)].

This in turn gives the energy as,

E =
1

4
(
√
E0
n ±

√
E0
n + ka)

⇒ En = E0
n +

1

2
ka+O

((
1

E0
n

)m)
, n = 1, 2, 3, .., (2.5)

where E0
n = n2π2~2

2ma2
.

In order to find the limiting forms of the energy and the wavefunction, we consider

the asymptotic form of the Airy functions.

Ai(−ξ) =
1√
π
ξ
−1
4 sin(z +

π

4
)

Bi(−ξ) =
1√
π
ξ
−1
4 cos(z +

π

4
), (2.6)

when ξ is very large.

Here z = 2
3
ξ

3
2 and ξ ≡ ( 2m

~2 )
1
3 (E−kx)

k
2
3

.

The use of asymptotic forms is justified as ξ is very large in the limit k → 0.

z =
2

3

(
(2m
~2 )

1
3 (E − kx)

k
2
3

) 3
2

≈ 2

3

(
2m

~2

) 1
2

E
3
2

(
1

k
− 3

2

x

E

)
(for small k) ,

19



plugging this into Eq.(2.6) we get,

lim
k→0

Ai(−ξ) = lim
k→0

Ai

(
−
[
(
2m

~2
)
1
3
E − kx
k

2
3

])

=
1√
π

[(
2m

~2

) 1
3 E − kx

k
2
3

]−1/4

sin

{
2

3

(
2m

~2

) 1
2

E
3
2

(
1

k
− 3

2

x

E

)
+
π

4

}

= H sin

{
H1

(
1

k
− 3

2

x

E

)
+
π

4

}
, (2.7)

where H = 1√
π

[
(2m
~2 )

1
3
E−kx
k
2
3

]− 1
4

and H1 = 2
3

(
2m
~2
) 1

2 E
3
2 .

Similarly,

lim
k→0

Bi(−ξ) = H cos

(
H1

(
1

k
− 3

2

x

E

)
+
π

4

)
. (2.8)

Now, in this limit

Ai(−ξ) = H sin

([
H1

k
+
π

4

]
− 3

2
H1

x

E

)
= H sin

(
H1

k
+
π

4

)
cos

(
3

2
H1

x

E

)
−H sin

(
3

2
H1

x

E

)
cos

(
H1

k
+
π

4

)

and

Bi(−ξ) = H cos

([
H1

k
+
π

4

]
− 3

2
H1

x

E

)
= H cos

(
H1

k
+
π

4

)
cos

(
3

2
H1

x

E

)
+H sin

(
H1

k
+
π

4

)
sin

(
3

2
H1

x

E

)

H ∼
(
E − kx
k

2
3

)−1/4

= E−1/4k
1
6

(
1− kx

E

)−1/4
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Figure 2.2: H as a function of k (for particles with finite mass and large but finite
Energy)

Plugging all these into Eq.(2.3),

ψ(x) = C1Ai

−(2m
~2
) 1

3 (kx− E)

k
2
3

+ C2Bi

−(2m
~2
) 1

3 (kx− E)

k
2
3


= C1Ai[−ξ] + C2Bi[−ξ]

= C1

[
H sin

(
H1

k
+
π

4

)
cos

(
3

2
H1

x

E

)
−H sin

(
3

2
H1

x

E

)
cos

(
H1

k
+
π

4

)]
+C2

[
H cos

(
H1

k
+
π

4

)
cos

(
3

2
H1

x

E

)
+H sin

(
H1

k
+
π

4

)
sin

(
3

2
H1

x

E

)]
.

(2.9)

Here, H1

E
= 2

3

√
2mE
~

⇒ ψ(x) = A sin
(√

2mE
~ x

)
+B cos

(√
2mE
~ x

)
.

One can easily identify this is the solution of the Schrödinger equation for a

particle in an infinite potential well [34].

Therefore we have shown in the limit k → 0 Eq.(2.3) reduces to the usual wavefunction

without any potential, which in turn proves the robustness the solution.

Next, we try to solve the GUP-induced Schrödinger equation with the same po-

tential.

21



2.3 GUP-corrected Schrödinger Equation with a One-dimensional Linear

Potential

Now that we have worked our way through a simple model with a weakly varying

gravitational potential, we can use this to a similar situation where we incorporate

GUP effects. We use the Hamiltonian given by Eq.(1.5), but in this case V (x) = kx

inside the box and V (x) =∞ ouside.

2.4 Solution of the GUP-corrected Schrödinger Equation:

Here. we are going to use the Schrödinger equation given by Eq.(1.7) with the

changes caused by this potential V (~r) = kx inside the box and V (~r) = ∞ outside.

Writing the Schrödinger equation with the modified Hamiltonian,

2iα~
d3

dx3
ψ +

d2

dx2
ψ +

2m

~2
(E − kx)ψ = 0 (2.10)

2.4.1 Perturbative Solutions

This is a third order linear differential equation. We hope to have the third

solution lead to a similar criterion [32] that would allow us to show the length of the

box can only assume some specific values.

Now, the above equation can be thought of as consisting of two parts,

part I: d2

dx2
ψ + 2m

~2 (E − kx)ψ

and part II: 2iα~ d3

dx3
ψ.

We intend to use a trial solution ψ1 = ψ0(E + cα, k, x), where the form of ψ0 is given

by Eq.(2.3), and claim that this is the solution we are looking for. It is to be noted

that ψ0(E, k, x) is the solution to part I
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ψ1 = ψ0(E + cα, k, x)

= ψ0(E, k, x) + cα
d

dE
ψ0(E, k, x) (2.11)

Substituting ψ1 in place of ψ in part I gives 0 + cα [terms containing d
dE
ψ0].

Since we are not interested in terms containing α2, we can just use ψ1 = ψ0(E, k, x)

for part II which in turn yields α[terms containing derivatives of ψ0(E, k, x)].

So, we get

α[terms containing derivatives of ψ0(E, k, x)]+0 + cα [terms containing d
dE
ψ0].

In order to have this expression to be zero for a value of c the terms in brackets

would have to be either independent of x or of the same leading order terms. In the

second case, we would argue that for small values of x we could neglect them and be

able to solve for c.

Combining all these along with Eqs.(2.10) and (2.11) we get

2iα~
d3

dx3
ψ0(E, k, x) + 2iα~cα

d3

dx3

(
d

dE
ψ0(E, k, x)

)
+ cα

d2

dx2

(
d

dE
ψ0(E, k, x)

)
+

2m

~2
(E − kx)cα

d

dE
ψ0(E, k, x)

= α

[
2i~

d3

dx3
ψ0(E, k, x)

]
+ cα

[
d2

dx2

(
d

dE
ψ0(E, k, x)

)
+

2m

~2
(E − kx)

d

dE
ψ0(E, k, x)

]
,

(2.12)

where

ψ0(E, k, x) = AAi(−ξ) +BBi(−ξ)

=
A√
π
ξ−1/4 sin

(
2

3
ξ

3
2 +

π

4

)
+

B√
π
ξ−1/4 cos

(
2

3
ξ

3
2 +

π

4

)
(2.13)
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ξ =
(

2m
~2
) 1

3 k−
2
3 (E − kx).

Now, plugging the derivatives (refer to appendix C) into Eq.(2.12),

α

[
2i~

d3

dx3
ψ0(E, k, x)

]
+ cα

[
d2

dx2

(
d

dE
ψ0(E, k, x)

)
+

2m

~2
(E − kx)

d

dE
ψ0(E, k, x)

]
= α

[
2i~
(
dξ

dx

)3
d3ψ0

dξ3

]
+ cα

[(
dξ

dx

)2
dξ

dE

d3ψ0

dξ3
+

2m

~2
(E − kx)

dξ

dE

ψ0

dξ

]
.

(2.14)

For simplicity, we are going to use one of the two independent solutions ψI0 and

ψII0 as ψ0 in Eq.(2.14). Our intention is to check if coefficients of α and cα in the

above expression have at least the same leading order terms.

Using ψ0 = ψI0 ,

α

[
2i~
(
dξ

dx

)3
d3ψ0

dξ3

]
+ cα

[(
dξ

dx

)2
dξ

dE

d3ψ0

dξ3
+

2m

~2
(E − kx)

dξ

dE

ψ0

dξ

]

= α

[
2i~
(
−2m

~2

)
k

(
− 1√

π

[
3

4
ξ−1/4 sin

(
2

3
ξ3/2 +

π

4

)
+ ξ5/4 cos

(
2

3
ξ3/2 +

π

4

)])]
+cα

[(
2m

~2

)2/3

k2/3

(
2m

~2

)1/3 −k−2/3

√
π

(
3

4
ξ−1/4 sin

(
2

3
ξ3/2 +

π

4

)
+ ξ5/4 cos

(
2

3
ξ3/2 +

π

4

))

+
2m

~2
(E − kx)

(
2m

~2

)1/3

k−2/3 1√
π

(
−1

4
ξ−5/4 sin

(
2

3
ξ3/2 +

π

4

)
+ ξ1/4 cos

(
2

3
ξ3/2 +

π

4

))]
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= α(2i~)

(
2m

~2

)(
k√
π

)3

4

((
2m

~2

)1/3

k−2/3

)−1/4

(E − kx)−1/4 sin

(
2

3
ξ3/2 +

π

4

)
+α(2i~)

(
2m

~2

)(
k√
π

)((2m

~2

)1/3

k−2/3

)5/4

(E − kx)5/4 cos

(
2

3
ξ3/2 +

π

4

)
−cα

(
2m

~2

)(
1√
π

)3

4

((
2m

~2

)1/3

k−2/3

)−1/4

(E − kx)−1/4 sin

(
2

3
ξ3/2 +

π

4

)
−cα

(
2m

~2

)(
1√
π

)((2m

~2

)1/3

k−2/3

)5/4

(E − kx)5/4 cos

(
2

3
ξ3/2 +

π

4

)
− cα√

π

[
1

4

(
2m

~2

)11/12

k1/6 (E − kx)−1/4 sin

(
2

3
ξ3/2 +

π

4

)

−
(

2m

~2

)17/12

k−5/6 (E − kx)5/4 cos

(
2

3
ξ3/2 +

π

4

)]

(2.15)

Since we are interested in the terms containing powers of x, it is to be noted that

the above expression would give the same leading order term for both α and cα.

Expanding the above expression using Taylor series and collecting coefficients of
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x0 (ignoring terms containing x and higher orders of x),

α(2i~)

(
2m

~2

)(
k√
π

)3

4

((
2m

~2

)1/3

k−2/3

)−1/4

E−1/4 sin
(
ξ0 +

π

4

)
+

((
2m

~2

)1/3

k−2/3

)5/4

E5/4 cos
(
ξ0 +

π

4

)
=

cα√
π

2m

~2

3

4

((
2m

~2

)1/3

k−2/3

)−1/4

E−1/4 sin
(
ξ0 +

π

4

)
+

((
2m

~2

)1/3

k−2/3

)5/4

E5/4 cos
(
ξ0 +

π

4

)
+
cα√
π

[
1

4

(
2m

~2

)11/12

k1/6E−1/4 sin
(
ξ0 +

π

4

)
−
(

2m

~2

)17/12

k−5/6E5/4 cos
(
ξ0 +

π

4

)]
(2.16)

⇒ 2i~

[
3

4

(
2m

~2

)11/12

k7/6E−1/4 sin
(
ξ0 +

π

4

)
+

(
2m

~2

)17/12

k1/6E5/4 cos
(
ξ0 +

π

4

)]

= c

(
2m

~2

)11/12

k1/6E−1/4 sin
(
ξ0 +

π

4

)
(2.17)

⇒ c = 2i~
3
4

(
2m
~2
)11/12

k7/6E−1/4 sin
(
ξ0 + π

4

)
+
(

2m
~2
)17/12

k1/6E5/4 cos
(
ξ0 + π

4

)(
2m
~2
)11/12

k1/6E−1/4 sin
(
ξ0 + π

4

)
= 2i~

(
3

4
k +

E3/2

tan(ξ0 + π
4
)

√
2m

~2

)
(2.18)

where,

ξ0 =
2

3

((
2m

~2

)1/3

k−2/3E

)3/2
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Now we are going to use the actual wavefunction in expression (3.31).

ψ0 = C1ψ
I
0 + C2ψ

II
0

For C1ψ
I
0 part, (3.31) yields,

α(2i~)
C1√
π

[
3

4

(
2m

~2

)11/12

k7/6(E − kx)−1/4 sin

(
2

3
ξ3/2 +

π

4

)
+

(
2m

~2

)17/12

k1/6(E − kx)5/4 cos

(
2

3
ξ3/2 +

π

4

)]

= (cα)
C1√
π

[(
2m

~2

)11/12

k1/6(E − kx)−1/4 sin

(
2

3
ξ3/2 +

π

4

)]
,

(2.19)

and for C1ψ
II
0 part, (3.31) gives,

α(2i~)
C2√
π

[(
2m

~2

)17/12

k1/6(E − kx)5/4 sin

(
2

3
ξ3/2 +

π

4

)
−

3

4

(
2m

~2

)11/12

k7/6(E − kx)−1/4 cos

(
2

3
ξ3/2 +

π

4

)]

= cα
C2√
π

[
−
(

2m

~2

)11/12

k1/6(E − kx)−1/4 cos

(
2

3
ξ3/2 +

π

4

)]
.

Combining them we get,

α(2i~)
3

4

(
2m

~2

)11/12

k7/6(E − kx)−1/4

[
C1 sin

(
2

3
ξ3/2 +

π

4

)
− C2 cos

(
2

3
ξ3/2 +

π

4

)]
+

α(2i~)
3

4

(
2m

~2

)17/12

k1/6(E − kx)5/4

[
C2 sin

(
2

3
ξ3/2 +

π

4

)
+ C1 cos

(
2

3
ξ3/2 +

π

4

)]
= cα

(
2m

~2

)11/12

k1/6(E − kx)−1/4

[
C1 sin

(
2

3
ξ3/2 +

π

4

)
− C2 cos

(
2

3
ξ3/2 +

π

4

)]
.

(2.20)

Expanding the above equation using Taylor series and collecting coefficients of x0
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(ignoring terms containing x and higher orders of x),

α(2i~)
3

4

(
2m

~2

)11/12

k7/6E−1/4
[
C1 sin(ξ0 +

π

4
)− C2 cos(ξ0 +

π

4
)
]

+α(2i~)

(
2m

~2

)17/12

k1/6E5/4
[
C2 sin(ξ0 +

π

4
)− C1 cos(ξ0 +

π

4
)
]

= cα

(
2m

~2

)11/12

k1/6E−1/4
[
C1 sin(ξ0 +

π

4
)− C2 cos(ξ0 +

π

4
)
]

(2.21)

So,

c =

[
(2i~)

3

4

(
2m

~2

)11/12

k7/6E−1/4
(
C1 sin(ξ0 +

π

4
)− C2 cos(ξ0 +

π

4
)
)

+

α(2i~)

(
2m

~2

)17/12

k1/6E5/4
(
C2 sin(ξ0 +

π

4
)− C1 cos(ξ0 +

π

4
)
)]
÷[(

2m

~2

)11/12

k1/6E−1/4
(
C1 sin(ξ0 +

π

4
)− C2 cos(ξ0 +

π

4
)
)]

. (2.22)

Hence, the wavefunction is given by,

ψ1 = ψ0(E + cα, k, x)

= ψ0(E, k, x) + cα
d

dE
ψ0(E, k, x)

= ψ0(E, k, x) + cα
d

dξ
ψ0(E, k, x)

dξ

dE

(2.23)

where ψ0(E, k, x), d
dξ
ψ0(E, k, x) and dξ

dE
are given by Eqs.(C.1), (C.8) and (C.3) in

order(see appendix C).

It is to be noted here, that the above general solution consists two independent

solutions instead of three. The reason is that they are basically coming from a second

28



order differential equation (Eq.(2.2)). We just used them to find a general solution

of the actual third order differential equation as each of them satisfies it separately.

This perturbative solution is mathematically rigorous and complex to deal with.

In the next few sections, we will find the non-perturbative third solution and

develop a method to impose the boundary conditions on the general solution.

2.4.2 Non-perturbative Solution

The solution given in Eq.(2.23) is perturbative and based on the solutions of a

second order differential equation.

We assume the form of the third non-perturbative solution of the Eq.(2.10) as ψIII0 =

eiµx/`Pl .

If we can find a valid µ that satisfies Eq.(2.10) then we can write the general

solution as ψ(x) = C1ψ
I
0 + C2ψ

II
0 + C3ψ

III
0 .

d

dx
ψIII0 =

(
iµ

`Pl

)
eiµx/`Pl =

iµ

`Pl
ψIII0

d2

dx2
ψIII0 = −

(
µ

`Pl

)2

ψIII0

d3

dx3
ψIII0 = −i

(
µ

`Pl

)3

ψIII0

(2.24)

Plugging the above into Eq.(2.10) we get

2iα~(−i)
(
µ3

`3
Pl

)
− µ2

`2
Pl

+
2m

~2
(E − kx) = 0

⇒ 2α0µ
3 − µ2 = 0 (in the limit `Pl → 0)

⇒ µ2(2α0µ− 1) = 0

⇒ µ =
1

2α0
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Therefore, ψIII0 = eix/2α0`Pl = eix/2~α

2.4.3 General Solution

The general solution of the GUP-corrected Schrödinger equation (one-dimension)

is given by,

ψ(x) =
A√
π

[
ξ−1/4 sin

(
2

3
ξ

3
2 +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ−5/4 sin

(
2

3
ξ3/2 +

π

4

)
+

ξ1/4 cos

(
2

3
ξ3/2 +

π

4

))]
+

B√
π

[
ξ−1/4 cos

(
2

3
ξ

3
2 +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4 sin

(
2

3
ξ3/2 +

π

4

)
− 1

4
ξ−5/4 cos

(
2

3
ξ3/2 +

π

4

))]
+

Ceix/2~α

(2.25)

The constant C is such that |C| becomes zero in the limit α → 0 as the last term

should drop out in this limit. Phase of A can be absorbed in ψ so A can be treated

as a real constant.

In the limit k → 0, the above equation should reduce to the general solution of

the free particle (no field inside the box) GUP-corrected Schrödinger equation. Using

the asymptotic forms of the Airy functions in the same limit and ignoring terms

containing higher orders of α we can show that the wavefunction given by Eq.(2.25)

becomes,

ψ(x) = H A1 sin(
3

2
H1

x

E
) +H A2 sin(

3

2
H1

x

E
) + (iα~)

[
(η1 A1 − η2 A2) sin(

3

2
H1

x

E
)+

(η1 A2 + η2 A1) cos(
3

2
H1

x

E
)+

]
+ Ceix/2~α,

(2.26)
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where

η1 = − 3

8
√
π

(
2m

~2

)−1/12

k7/6(E − kx)−5/4 ≈ − 3

8
√
π

(
2m

~2

)−1/12

k7/6E−5/4

η2 = − 3

2
√
π

(
2m

~2

)5/12

k−1/6(E − kx)1/4 ≈ − 3

8
√
π

(
2m

~2

)5/12

k−1/6E1/4

A1 = −A cos(
H1

k
+
π

4
) +B sin(

H1

k
+
π

4
)

A2 = A sin(
H1

k
+
π

4
) +B cos(

H1

k
+
π

4
) (see section 2.2)

Also, in the limit α → 0 Eq.(2.10) becomes a second order inhomogeneous dif-

ferential equation and in that case the solution given by Eq.(2.25) must become

ψ(x) containing the Airy functions only, i.e., limα→0 ψ(x) = A√
π
ξ−1/4 sin

(
2
3
ξ

3
2 + π

4

)
+

B√
π
ξ−1/4 cos

(
2
3
ξ

3
2 + π

4

)
. This implies limα→0 |C| = 0
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2.5 Boundary Conditions and Length Quantization

Now that we have the wavefunction corresponding to the GUP-induced Schrödinger

equation, we can use the boundary conditions ψ(0) = 0 and ψ(L) = 0. Like the case

without a gravitational potential [32], here we hope to find a new condition that

would lead to a restriction on the length of the box.

Imposing the boundary condition ψ(0) = 0 on Eq.(2.25) we get,

A√
π

[
ξ
−1/4
0 sin

(
2

3
ξ

3
2
0 +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ
−5/4
0 sin

(
2

3
ξ

3/2
0 +

π

4

)
+

ξ
1/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
+

B√
π

[
ξ
−1/4
0 cos

(
2

3
ξ

3
2
0 +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4

0 sin

(
2

3
ξ

3/2
0 +

π

4

)
− 1

4
ξ
−5/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
+ C = 0

(2.27)

Substituting for C in Eq.(2.25),

ψ(x) =
A√
π

[
ξ−1/4 sin

(
2

3
ξ

3
2 +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ−5/4 sin

(
2

3
ξ3/2 +

π

4

)
+

ξ1/4 cos

(
2

3
ξ3/2 +

π

4

))]
+

B√
π

[
ξ−1/4 cos

(
2

3
ξ

3
2 +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4 sin

(
2

3
ξ3/2 +

π

4

)
− 1

4
ξ−5/4 cos

(
2

3
ξ3/2 +

π

4

))]

−eix/2~α A√
π

[
ξ
−1/4
0 sin

(
2

3
ξ

3
2
0 +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ
−5/4
0 sin

(
2

3
ξ

3/2
0 +

π

4

)
+ ξ

1/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
− eix/2~α B√

π

[
ξ
−1/4
0 cos

(
2

3
ξ

3
2
0 +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4

0 sin

(
2

3
ξ

3/2
0 +

π

4

)
− 1

4
ξ
−5/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
.

(2.28)
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Now, the remaining boundary condition ψ(L) = 0 implies,

eiL/2~α =
f(ξL)

f(ξ0)
, (2.29)

where

f(ξL) =
A√
π

[
ξ
−1/4
L sin

(
2

3
ξ

3
2
L +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ
−5/4
L sin

(
2

3
ξ

3/2
L +

π

4

)
+

ξ
1/4
L cos

(
2

3
ξ

3/2
L +

π

4

))]
+

B√
π

[
ξ−1/4 cos

(
2

3
ξ

3
2
L +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4

L sin

(
2

3
ξ

3/2
L +

π

4

)
− 1

4
ξ
−5/4
L cos

(
2

3
ξ

3/2
L +

π

4

))]
,

f(ξ0) =
A√
π

[
ξ
−1/4
0 sin

(
2

3
ξ

3
2
0 +

π

4

)
+

(
2m

~2

)1/3

k−2/3cα

(
−1

4
ξ
−5/4
0 sin

(
2

3
ξ

3/2
0 +

π

4

)
+

ξ
1/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
+

B√
π

[
ξ
−1/4
0 cos

(
2

3
ξ

3
2
0 +

π

4

)
+(

2m

~2

)1/3

k−2/3cα

(
−ξ1/4

0 sin

(
2

3
ξ

3/2
0 +

π

4

)
− 1

4
ξ
−5/4
0 cos

(
2

3
ξ

3/2
0 +

π

4

))]
,

and

ξL =

(
2m

~2

)1/3

k−2/3(E − kL),

ξ0 =

(
2m

~2

)1/3

k−2/3E,
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Expanding f(ξL) and f(ξ0) w.r.t. α we get,

f(ξL) ≈ (
2m

~2
)−1/12k1/6(E − kL)−1/4

[
A sin

(
2

3

√
2m

~2

(E − kL)3/2

k
+
π

4

)
+

B cos

(
2

3

√
2m

~2

(E − kL)3/2

k
+
π

4

)]
+O(α)

and

f(ξ0) ≈ (
2m

~2
)−1/12k1/6E−1/4

[
A sin

(
2

3

√
2m

~2

E3/2

k
+
π

4

)
+

B cos

(
2

3

√
2m

~2

E3/2

k
+
π

4

)]
+O(α).

Thus,

eiL/2~α =
(E − kL)−1/4

[
A sin

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
+B cos

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)]
E−1/4

[
A sin

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+B cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)]
+O(α)

=

(
1− kL

E

)−1/4 A sin
(

2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
+B cos

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
A sin

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+B cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+O(α)

(2.30)

Writing B = |B|eiθB we get from the RHS of the above equation,

A sin
(

2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
+ |B|eiθB cos

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
A sin

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+ |B|eiθB cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)

=
A sin

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
+ |B| cos(θB) cos

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
+ i|B| sin(θB) cos

(
2
3

√
2m
~2

(E−kL)3/2

k
+ π

4

)
A sin(

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
) + |B| cos(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+ i|B| sin(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
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(2.31)

Thus the real part the RHS of Eq.(2.30) is given by,

 A2 sin
(

2
3

√
2m
~2

E3/2

k
+ π

4

)
+A|B| cos(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
(
A sin

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+ |B| cos(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

))2
+ |B|2 sin2(θB) cos2

(
2
3

√
2m
~2

E3/2

k
+ π

4

)


× sin

(
2

3

√
2m

~2
(E − kL)3/2

k
+
π

4

)

+

A|B| cos(θB) sin
(

2
3

√
2m
~2

E3/2

k
+ π

4

)
+ |B|2 cos2(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+ |B|2 sin2(θB) cos2

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
(
A sin

(
2
3

√
2m
~2

E3/2

k
+ π

4

)
+ |B| cos(θB) cos

(
2
3

√
2m
~2

E3/2

k
+ π

4

))2
+ |B|2 sin2(θB) cos2

(
2
3

√
2m
~2

E3/2

k
+ π

4

)


× cos

(
2

3

√
2m

~2
(E − kL)3/2

k
+
π

4

)

= A∗ sin

(
2

3

√
2m

~2
(E − kL)3/2

k
+
π

4

)
+B∗ cos

(
2

3

√
2m

~2
(E − kL)3/2

k
+
π

4

)

Collecting real terms form both sides of the Eq.(2.30),

cos(L/2~α) =

(
1− kL

E

)−1/4
(
A∗ sin

(
2

3

√
2m

~2

(E − kL)3/2

k
+
π

4

)
+

B∗ cos

(
2

3

√
2m

~2

(E − kL)3/2

k
+
π

4

))
(2.32)

Following the same argument in sec 2.2, the limit k → 0 the RHS the above

equation becomes

B1 cos

(√
2mE

~2
L

)
− A1 sin

(√
2mE

~2
L

)
,
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where A1 = H
(
A∗ cos

(
H1

k
+ π

4

)
−B∗ sin

(
H1

k
+ π

4

))
and

B1 = H
(
A∗ sin

(
H1

k
+ π

4

)
+B∗ cos

(
H1

k
+ π

4

))
(see page 19 for H,H1).

Without loss of generality, letting A1 = sin−1 θ and B1 = cos−1 θ for an arbitrary θ

we can write

cos(L/2~α) = cos θ cos

(√
2mE

~2
L

)
− sin θ sin

(√
2mE

~2
L

)
= cos

(√
2mE

~2
L+ θ

)

Referring to [32], we know that this implies L0

2α~ = pπ, p ∈ N, L0 being the length

of the box in flat space-time [32].

Since, L is a perturbation over L0 we can write,

L

2~α
= P0(kL0) + pπ. (2.33)

It is to be noted that P0 is a small perturbative term and that L0

2α~ = p1π itself for

p1 ∈ N. P0 is a polynomial in kL derived from the RHS of Eq.(2.32).

We can write Eq.(2.33) as ,

L

2~α
= f(k)p1π + pπ. (2.34)

For each p we have a finite set of p1 values. As the perturbative term has to be

small, the number of p1 values, for each p, depends on the smallness of f(k). Fig.(3.3)

is included to provide a qualitative comparison. We can see we have a fine structure

(splitting) of the length quantization when gravity is involved compared to the much

simpler shell structure when gravity is not involved. This might remind one of the

similarities with the energy quantization of the hydrogen atom.

One might be interested to delve into the possible connection between the two.

Consideration of the significance of this apparent coincidence may further suggest

investigation of discreteness of space(time). Although the original Heisenberg Un-
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Figure 2.3: Comparison between L0(solid lines) and L (dotted lines)

certainty Principle is restricted to position-momentum commutation and time-energy

uncertainty principle has been merely thought of a statistical measure of variance, a

more generalized idea of GUP corrected commutation relation involving 4-momentum

might give rise to discontinuity of time. This is beyond the scope of our work, but

we hope to shed light on this topic in the future.

According to this relation it is evident that there can not exist a single particle

inside the box unless the length of the box assumes only certain values. It is also

noted from the above relation that the length must be in units of α0l0.

So, like the case with flat spacetime, GUP effects lead to length quantization in

presence of gravity. Although we have shown it for a particle inside the box under

the influence of gravity it can be extended to more general cases. Also, a particle in a

box provides a way to measure length in one dimension. This result is sufficient but

not limited to one-dimensional or non-relativistic scenarios.

We will discuss the relativistic and higher dimensional counterpart in the next

chapter.
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Chapter 3

Discreteness of Space from GUP : Relativistic Case

As explained in section 1.4.2, we need a formalism to investigate the modification

of discreteness of space in a relativistic situation. The structure of spacetime does

not necessarily change depending on relativistic or non-relativistic test particles used

to probe it with, but it is quite fair that particles with speeds compared to the

speed of light can potentially reveal the structure better compared to less energetic

particles. In this chapter, we will have a closer look at the relativistic equivalent of the

Schrödinger equation and in particular the modification induced by GUP. Now, the

relativistic version of Schrödinger equation is Klein-Gordon equation. First we will

derive the GUP-version of the Klein-Gordon equation with a linear potential and then

try to solve it to obtain possible length quantization. Notwithstanding it’s relative

simplicity, Klein-Gordon equation has mathematical difficulties, especially when it

comes to dimensions higher than one, it’s much easier to resort to a more versatile

Dirac equation. In the consecutive sections we will try to solve the Dirac equation in

3-spatial dimensions and hope for getting a similar length quantization as in [33].

3.1 Klein-Gordon Equation in One dimension

The Klein-Gordon (sometimes known as Klein-Gordon-Fock) equation with no
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field is given by [36],

(~2� +m2c2)ψ = 0, (3.1)

where � = 1
c2

∂2

∂t2
− ∇2, ~∇ = ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂. It is basically same as Eq.(1.16). In

order to find the GUP-corrected Klein-Gordon equation we start from the Lorentz

invariant energy momentum equation,

pµp
µ = m2c2

⇒ E2 = p2c2 +m2c4 (3.2)

Einstein summation notation is followed here. Now we replace the momentum with

the GUP-corrected momentum p = p0(1−αp0) and calculate the following quantities,

p2 = p2
0 − 2αp3

0

p0 ≡ −i~
∂

∂
;E ≡ i~

∂

∂t

⇒ p2
0 = −~2 ∂

2

∂x2
; p3

0 = i~3 ∂
3

∂x3
.

Plugging these into Eq.(3.2) we get,

−c2~2∂
2Ψ(x, t)

∂x2
− c22αi~3∂

3Ψ(x, t)

∂x3
+m2c4Ψ = −~2∂

2Ψ(x, t)

∂t2

Considering the stationary solutions only,

−c2~2∂
2Ψ(x)

∂x2
− 2c2α~3d

3Ψ(x)

dx3
+m2c4Ψ = E2Ψ(x)

⇒ 2iα~
d3ψ

dx3
+
d2ψ

dx2
+

((E/m2c2)2 − 1)

~2
m2c2ψ = 0 (3.3)

This is the GUP-corrected one-dimensional Klein-Gordon equation in flat space-time.
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If we are to consider a relativistic particle in a one-dimensional box with a linearized

potential V (x) = kx, we can write the above equation in an equivalent form E ∼√
−2iα~d3ψ

dx3
− d2ψ

dx2
+m2c4 + V (x) and then rewrite this as,

−2iα~
d3ψ

dx3
− d2ψ

dx2
+m2c4ψ = (E − V (x))2 ψ

⇒ 2iα~
d3ψ

dx3
+
d2ψ

dx2
+

1

~2c2

(
E2 −m2c4 − 2Ekx

)
ψ = 0 (3.4)

If we can make the following connections between the variables in the above equation

and those in equation (2.10): 2iα~d
3ψ
dx3

+ d2ψ
dx2

+ 2m
~2 (E − kx)ψ = 0

2m

~2
E → 1

~2c2
(E2 −m2c4),

2Ek

~2c2
→ 2mk

~2
,

we get similar length quantization result as in section 2.5.

3.2 Dirac Equation

The three-dimensional version of Klein-Gordon equation suffers from non-locality

of differential operators. The term p2, when GUP is considered, becomes p2 =

p2
0 − 2αp3

0 = −~2∇2 + 2iα~3∇3. Now the second term is 2iα~3
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)3/2

.

Without going into the mathematical details of fractional calculus [37], we can simply

use the Dirac equation in order to avoid this problem.

The free particle Dirac equation is given by [39],

i
∂Ψ

∂t
=
(
βmc2 + c~α. ~P

)
Ψ, (3.5)
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where

β ≡ γ0 =

 I2 0

0 −I2

 (3.6)

and

αi ≡ γ0γi =

 I2 0

0 −I2


 0 σi

−σi 0

 =

 0 σi

σi 0

 . (3.7)

σi, i=1(1)3 for the 3 spatial dimensions, are the Pauli spin matrices and they are

given by [38],

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 (3.8)

Here βmc2 + c~α. ~P is the Dirac Hamiltonian with no field. It is to noted that ~α is

distinct from the parameter α present in the GUP-corrected quantum mechanical

equations.

For an addition of a potential term in the form V (x) = kx we can write the Dirac

equation as,

i
∂Ψ

∂t
=
(
βmc2 + c~α. ~P + kxI4

)
Ψ. (3.9)

Particularly, for one spatial dimension, say z, the GUP-corrected Dirac equation

becomes,

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 + kzI4

)
ψ(z) = Eψ(z). (3.10)

Unlike Eq(3.6), the above is an eigenvalue equation.
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3.3 Solution of Dirac Equation

Rewriting Eq.(3.11) we get,

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 − E + kz

)
ψ(Z) = 0. (3.11)

3.3.1 Perturbative solution

In order to solve the above equation we develop the following formalism.

The differential operator in Eq.(3.12) can be thought of composed of two components

−ic~αz ddz + cα~2 d2

dz2
+ βmc2 − E and kz. This second component can be considered

as a perturbative term as both k and z are small. The solution to the first being

already known [33], we can add a small perturbative term to that solution in order

to get the complete solution of Eq.(3.12).

Let us use a trial solution of the form ψ = ψ(κ + C1k) which can also be written as

ψ = ψ1(k = 0) + C1k
d
dκ
ψ1(k = 0) to the first order of approximation since a small k

perturbative term seems logical to use.

Here, ψ1(k = 0) = N1e
iκz

 χ

rσzχ

.

κ = κ0 + α~κ2
0, κ0 being the wave number that satisfies E2 = (~κ0)2 + (mc2)2, r =

~κ0c
E+mc2

and χ†χ = I. Now, we re-write Eq.(3.12)using the above.

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 − E + kz

)N1e
iκz

 χ

rσzχ

+ C1kizN1e
iκz

 χ

rσzχ




= 0

(3.12)
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As we have discussed above,

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 − E

)
N1e

iκz

 χ

rσzχ

 = 0.

Also, since k is very small, (kz)

kizN1e
iκz

 χ

rσzχ


 = 0

In that case, Eq.(3.13) reduces to,

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 − E

)
C1kizN1e

iκz

 χ

rσzχ

+ kzN1e
iκz

 χ

rσzχ

 = 0

⇒ C1

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+ βmc2 − E

)
izψ1 = −zψ1

(3.13)

If we can find a valid C1 for the above, we can claim ψ1 is a solution of Eq.(3.13)

which in turn means ψ is a solution of Eq. (3.12).

C1

(
c~αz

d

dz
(zψ1) + icα~2

d2

dz2
(zψ1) +mc2β(izψ1)− iE(zψ1)

)
= −zψ1

(3.14)

⇒ C1

(c~+ ic~κz)

 0 σz

σz 0

+ imc2z

 I2 0

0 −I2

− (2cακ~2 + izE + icα~2z
)
 I2 0

0 I2


ψ =

−zψ
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⇒


(
imc2z − 2cακ~2 − izE − icακ~2z

)
I2 c~(1 + κz)σz

c~(1 + κz)σz
(
−imc2z − 2cακ~2 − izE − icακ~2z

)
I2

 = − z

C1
ψ1

(3.15)

This is clearly an eigenvalue equation the associated matrix of which must be

singular in order to have nontrivial solutions. In other words,

∣∣∣∣∣∣∣∣∣
(
z
C1

+ imc2z − 2cακ~2 − izE − icακ~2z
)
I2 c~(1 + iκz)σz

c~(1 + iκz)σz
(
z
C1
− imc2z − 2cακ~2 − izE − icακ~2z

)
I2

∣∣∣∣∣∣∣∣∣ = 0

(3.16)

Clearly, this is a characteristic equation in z/C1, which by expanding the determinant,

can be written as,

(
z

C1

− 2icακ~2 − iz(E + cακ~2)

)2

− (imc2z)2 − c2~2(1 + iκz)2 = 0.

For small z (which is quite reasonable considering the fact that the dimension we are

dealing with is close to the Planck length), the above equation gives,

(
z

C1

− 2cακ~)2 − 2z(
z

C1

− 2cακ~)(E + cακ~2)− ~2c2 − 2ic2~2κz = 0

⇒ 4cακ~2z

C1

= 4icακ~2z(E + cακ~2)− ~2c2(1 + 2iκz)

⇒ 1

C1

=
4iακz(E + cακ~2)− (c+ 2icκz)

4ακz

⇒ 1

C1

= −c+ 2iακz (c(1− 2ακ~2)− 2E)

4ακz

⇒ C1 = − 4ακ

c/z + 2iακ (c(1− 2ακ~2)− 2E)
(3.17)

44



So, the solution of Eq.(3.12) is given by,

ψ = N1e
iκz

 χ

rσzχ

− 4ακ

c/z + 2iακ (c(1− 2ακ~2)− 2E)
kizN1e

iκz

 χ

rσzχ


=

(
1− 4ikακz

c/z + 2iακ (c(1− 2ακ~2)− 2E)

)
N1e

iκz

 χ

rσzχ

 (3.18)

The above is the perturbative wavefunction corresponding to the GUP-corrected

Dirac equation.

3.3.2 Non-perturbative solution

Let us suppose the non-perturbative solution has the form

ψNP = eiµz/`Pl

 χ

σzχ

 (3.19)

Now, plugging this solution into Eq.(3.12),

(
−ic~αz

d

dz
+ cα~2 d

2

dz2
+mc2β − E + kz

)
eiµz/`Pl

 χ

σzχ

 = 0

⇒ µ(1− α0µ) = 0

⇒ µ

`Pl
=

1

α~

3.4 Boundary Condition and Length Quantization

It is to be noted that GUP-induced Dirac equation with a linearized potential is a

second order inhomogeneous differential equation. Also because the matrix associated

is of order 4×4, one can expect eight linearly independent solutions. Here, we wish to

restrict ourselves to positive energy solutions only. In that case we have four linearly
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independent solutions given by,

ψ1 = N1

(
1− 4ikακz

c/z + 2iακ (c(1− 2ακ~2)− 2E)

)
eiκz

 χ

rσzχ

 (3.20)

ψ2 = N2e
iz/α~

 χ

σzχ

 (3.21)

where χ is a normalized spinor, meaning χ†χ = 1. χ could be chosen as

 1

0

 for

spin up state or

 0

1

 for spin down state or any linear combination of the two.

It is to be noted that similar to the case of GUP-induced Schrödinger equation this

non-perturbative solution here should disappear in the limit α → 0 as we should

get our old Dirac equation back in the same limit which is essentially a first order

differential equation.

Now, if we try to impose the boundary conditions on the wavefunction by letting

the gravitational potential go to infinity just outside the box, like we did in the non-

relativistic case, the so-called Klein paradox occurs. In other words, the flux of the

reflected plane wave on the infinite walls (boundaries) of the box appears higher than

that of the incident wave [40].

In order to avoid this situation, we resort to the famous MIT bag model of confined

quarks once again [41].

As discussed in [33], the mass of the relativistic particle of interest is considered as a

function of z,

m(z) =


M if z ≤ 0

m 0 ≤ z ≤ L

M z ≥ L,

(3.22)
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where m is the rest mass of the particle and M is a constant. In order to have an

equivalent picture as infinite potential walls we will let M eventually grow infinitely

large causing the particle trapped inside the box. The advantage of this method

is that now we have the opportunity to consider the solution of the GUP-induced

Dirac equation separately in three regions, region I associated with z ≤ 0, II with

0 ≤ z ≤ L and III with z ≥ L. Now, in all of these three regions the wavefunction

should assume the same form of a linear combination of the perturbative and non-

perturbative solutions. Although, inside the box, i.e., in region II one might consider

an incident and a reflected wave whereas outside the box, it would suffice to consider

only one wave travelling outward from the walls. It should be a plane wave travelling

left in region I and travelling right in region III.

So, with reference to [33], the wavefunctions in the three regions are given by,

ψI = A

(
1 +

4ikακ
′
z

c/z − 2iακ′ (c(1 + 2ακ′~2)− 2E)

)
e−iκ

′
z

 χ

−Rσzχ

+Ge
iz
α~

 χ

σzχ



(3.23)

ψII = B

(
1− 4ikακz

c/z + 2iακ (c(1− 2ακ~2)− 2E)

)
eiκz

 χ

rσzχ


+C

(
1 +

4ikακz

c/z − 2iακ (c(1 + 2ακ~2)− 2E)

)
e−iκz

 χ

−rσzχ


+Fe

iz
α~

 χ

σzχ


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(3.24)

ψIII = D

(
1− 4ikακ

′
z

c/z + 2iακ′ (c(1− 2ακ′~2)− 2E)

)
eiκ
′
z

 χ

Rσzχ

+He
iz
α~

 χ

σzχ

 ,

(3.25)

where κ
′

= κ
′
0 + α~κ′0

2
, E =

√
(~κ′0c)2 + (Mc2)2 and R =

~κ′0c
E+Mc2

. To give the above

wavefunctions a little simpler form, let us have

ρ1 =

(
1− 4ikακz

c/z + 2iακ (c(1− 2ακ~2)− 2E)

)
ρ2 =

(
1 +

4ikακz

c/z − 2iακ (c(1 + 2ακ~2)− 2E)

)
ρ
′

1 =

(
1− 4ikακ

′
z

c/z + 2iακ′ (c(1− 2ακ′~2)− 2E)

)
ρ
′

2 =

(
1 +

4ikακ
′
z

c/z − 2iακ′ (c(1 + 2ακ′~2)− 2E)

)
,

and re-write the wavefunctions as,

ψI = Aρ2
′e−iκ

′
z

 χ

−Rσzχ

+Ge
iz
α~

 χ

σzχ

 (3.26)

ψII = Bρ1e
iκz

 χ

rσzχ

+ Cρ2e
−iκz

 χ

−rσzχ

+ Fe
iz
α~

 χ

σzχ


(3.27)

ψIII = Dρ
′

1e
iκ
′
z

 χ

Rσzχ

+He
iz
α~

 χ

σzχ

 . (3.28)

Following the same line of argument as in [33], we can say that when M is very large,
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E2 − M2c4 < 0 which means κ
′
0 =

√
E2

c2
−M2c2/~ is imaginary. So, in the limit

M → ∞, κ
′
0 → i∞ and κ

′
= i

~

√
Mc2 − E2

c2
− α

~ (M2c2 − E2

c2
) is a very large com-

plex number. It follows that e−iκ
′
z =

(
e−
|z|
~

√
Mc2−E2

c2

)(
e−

iα|z|
~ (M2c2−E

2

c2
)

)
→ 0 and

eiκ
′
z =

(
e−

z
~

√
Mc2−E2

c2

)(
e−

iαz
~ (M2c2−E

2

c2
)

)
→ 0 in the limit M → ∞. This is simply

because the modulus of each of these complex numbers becomes zero in this limit.

Moreover, both ρ
′
1 and ρ2

′ ∼ 1−O(i/κ
′
0) so they become unity in the limit M →∞.

So, in the limit M →∞ the terms containing A and D becomes zero. As for the the

terms associated with G and H, the fluxes are nonzero [33] which means we have to

set G = 0 and H = 0. Now, in the limit α→ 0 and k → 0 Eq.(3.12) becomes the old

Dirac equation without any effects of GUP. As we can see from Eq.(3.27), this means

ρ1 and ρ2 must become unity which is evident. Moreover, this means the term with

F must vanish in the limit α → 0, which compels us to choose F ∼ αs, s > 0. This

will also take care of the possible blowup of the exponential term, especially if we let

s ≥ 10 F will decrease reasonably faster than e
1
α increases. This lower bound of s is

based on a numerical comparison between α and s calculated in MapleTM16 .

Finally, without loss of generality we can choose B = 1 like in [33] but the selec-

tion of C is to be determined from its relationship with B, which we are about to

figure out.

The usual boundary conditions that one would expect for the Schrödinger equation,

viz., ψII(z = 0) = 0ψII(z = L) do not quite work in this case as they would make the

wavefunction inside the box vanish. Alternatively, we use the MIT bag model which

is having the outward flux of the Dirac current at the boundaries z = 0 and z = L
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zero [40]. Equivalently one can write [41],

iγ3ψ = ψ, at z = 0 (3.29)

iγ3ψ = −ψ, at z = L. (3.30)

Using ψ = ψII in Eq.(3.29) we get,

iγ3ψII(0) = ψII(0)

⇒ iBρ1

 0 σz

−σz 0


 χ

rσzχ

+ iCρ2

 0 σz

−σz 0


 χ

−rσzχ


+iF

 0 σz

−σz 0


 χ

σzχ


= Bρ1

 χ

rσzχ

+ Cρ2

 χ

−rσzχ

+ F

 χ

σzχ


Collecting terms,

irBρ1 − irCρ2 + iF = Bρ1 + Cρ2 + F

⇒ ir(ρ1B − ρ2C) = ρ1B + ρ2C + F (1− i)

⇒ ir(ρ1B − ρ2C) = ρ1B + ρ2C + F
√

2e−iπ/4

⇒ ρ1B + ρ2C + F
′
e−iπ/4

ρ1B − ρ2C
= ir, (3.31)

where F
′
=
√

2F .
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From the other boundary condition (Eq. (3.30)),

iBρ1e
iκL

 0 σz

−σz 0


 χ

rσzχ

+ iCρ2e
−iκL

 0 σz

−σz 0


 χ

−rσzχ


+iFeiL/α~

 0 σz

−σz 0


 χ

σzχ


= −Bρ1e

iκL

 χ

rσzχ

− Ce−iκLρ2

 χ

−rσzχ

− FeiL/α~
 χ

σzχ


Collecting terms,

irBρ1e
iκL − irCρ2e

−iκL + iFeiL/α~ = −Bρ1e
iκL − Cρ2e

−iκL − FeiL/α~

⇒ ρ1Be
iκL + ρ2Ce

−iκL + F
′
ei(L/α~+π/4)

ρ1BeiκL − ρ2Ce−iκL
= −ir, (3.32)

In order to establish a relationship between B and C let us start with Eq.(3.31),

ρ1B + ρ2C + F
′
e−iπ/4

ρ1B − ρ2C
= ir

⇒ C =
ρ1

ρ2

ir − 1

ir + 1
B − F ′ e−iπ/4

ρ2(ir + 1)
. (3.33)

It is to be noted that ir−1
ir+1

is unimodular as it can be expressed as

ir−1
ir+1

= −r2+1−2ir
−r2−1

= r2−1
r2+1

+ i 2r
r2+1

= eδ where

δ = tan−1(
2r

r2 − 1
). (3.34)

ρ2 increases with k, the linear potential term, and ρ2 → 1 as k → 0. So, Eq.(3.33)

can be re-written as,

C =
|ρ1|
|ρ2|

ei(θρ1−θρ2 )eiδB +O(α), (3.35)
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and

|C| = |B| |ρ1|
|ρ2|

+O(α). (3.36)

Clearly, in the limit k → 0, ρ1 → 1 = ρ2 = 1 and θρ1 = θρ2 = 0.

To find a condition on the length of the box, we will consider the other boundary

condition. We get from Eq. (3.32),

ρ1Be
iκL + ρ2Ce

−iκL + F
′
ei(L/α~+π/4) = −irρ1Be

iκL + irρ2Ce
−iκL

⇒ ρ1(ir + 1)BeiκL + F
′
ei(L/α~+π/4) = ρ2(ir − 1)Ce−iκL (3.37)

Now, if we substitute C = |ρ1|
|ρ2|e

i(θρ1−θρ2 )eiδB in Eq.(3.37) we get,

ρ1(ir + 1)BeiκL + F
′
ei(L/α~+π/4) = ρ2(ir − 1)

|ρ1|
|ρ2|

ei(θρ1−θρ2 )e−iκLeiδB

⇒ Be2iκL + F
′ ei(L/α~+π/4)

ρ1(ir + 1)
=
ir − 1

ir + 1
eiδB

(3.38)

Choosing B = 1 and substituting eiδ = ir−1
ir+1

in Eq.(3.38),

e2iκL =

(
ir − 1

ir + 1

)2

− F ′ e
i(L/α~+π/4)

ρ1(ir + 1)
(3.39)

⇒ e2ikL = e
2i tan−1

(
2r

r2−1

)
− F ′ e

i(L/α~+π/4)

ρ1(ir + 1)
(3.40)

⇒ κL = tan−1

(
2r

r2 − 1

)
+O(ln(α)) (3.41)
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Now, from Eq.(3.37)

ρ1(ir + 1)BeiκL + F
′
ei(L/α~+π/4) = ρ2(ir − 1)Ce−iκL

⇒ ei(L/α~+π/4) =

ρ1(ir − 1)

(
ei(δ−κL)−e

i

(
κL−tan−1

(
2r

r2−1

)))
F ′

(3.42)

It follows from Eq.(3.42),

L

α~
= −π

4
+ arg


ρ1(ir − 1)

(
ei(δ−κL)−e

i

(
κL−tan−1

(
2r

r2−1

)))
F ′

+ 2nπ, n ∈ N

(3.43)

It is to be noted unlike the case without the presence of gravity [33] δ and κL here

are not the same as given by Eq.(3.34) and (3.41). They become the same in the

limit k → 0.

Thus, a relativistic particle can be trapped in a one-dimensional box, with a linearized

gravitational potential inside, only if the length of the box is quantized and the nature

of quantization is given by the above equation.

One would expect in the limit k → 0 Eq.(3.39) to reduce to the old quantization rule

given by Eq. (27) in [33]. To verify this we begin with Eq. (22) in [33] which on

slight algebraic rearrangement gives,

e−iπ/4 =
(ir − 1)− (ir + 1)eiδ

F ′
(3.44)

53



Now, if we let k go to zero, ρ→ 1, κL→ δ. So the RHS of Eq.(3.42) becomes,

ρ1(ir − 1)

(
ei(δ−κL)−e

i

(
κL−tan−1

(
2r

r2−1

)))
F ′

=
(ir − 1)− (ir + 1)eiδ

F ′
(3.45)

So, comparing Eqs.(3.42),(3.44) and (3.45) we can write (in the limit k → 0),

ei(L/α~+π/4) = e−iπ/4

⇒ L

α~
= −π

2
+ 2nπ, n ∈ N, (3.46)

which is nothing but the length quatization rule for a relativistic particle in a box

without the influence of gravity (see Eq.(1.22)).

3.5 Dirac Equation in Three Dimensions

As discussed in section 1.4.3, discreteness of space for two and three dimensions

has been shown without gravity. In this section we consider the generalized Dirac

equation for three dimensions and extend the result for a box with a slowly varying

gravitational potential inside, which can be linearized as before.

Let us consider a box defined by 0 ≤ xi ≤ Li, i = 1(1)d, d being the dimension of the

box, i.e., d = 1, 2 or 3. This box can be one two or three-dimensional. Now, we have

a linear potential inside as before. Without loss of generality, we can consider the

direction in which the potential changes as our x-direction. The Dirac Hamiltonian
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with a potential term can be written as

H = ~cα.~p+ βmc2 + V (~r)I

= c (αxpx + αypy + αzpz) + βmc2 + kxI

= c~α.~p0 − cα (~α.~p0) (~α.~p0) + βmc2 + kxI

(3.47)

It is to be noted that we used the GUP-corrected momenta, pi = p0i(1 − αp0), i =

1, .., 3, where p0i = −i~ d
dxi

and followed Dirac prescription, i.e., we replaced p0 by

~α.~p0.

We are going to use the same ansatz here as in [33] (see section 1.4.3) . The Dirac

Hamiltonian here is same as that in [33] except for a potential along x-axis. We

already know the modified perturbative and non-perturbative wavefunctions under

the influence of a one-dimensional linear potential. So, combining Eqs.(3.20), (3.21)

in section 3.4 and Eq. (30) and (31) in [33] we can write the two independent wave-

functions corresponding to the above Hamiltonian,

ψ1 = N1ρje
i~κ.~r

 χ

rκ̂.~σχ

 (3.48)

ψ2 = N2e
i q̂.~r
α~

 χ

q̂.~σχ

 , (3.49)

j = 1, 2 for wavefronts going rightward and leftward respectively.

ρ1 =

(
1− 4ikακ1x

c/x+ 2iακ1 (c(1− 2ακ~2)− 2E)

)
ρ2 =

(
1 +

4ikακ1x

c/x− 2iακ1 (c(1 + 2ακ1~2)− 2E)

)
.

Now, just like we did in section 3.4, here also we distinguish between regions in-

55



side and outside the box, but unlike the one-dimensional case, here we consider the

wavefunction inside the box only. We impose the boundary conditions on this wave-

function by resorting to the MIT bag model again.

Let us consider the following general form of a wavefunction inside the box going in

a particular direction,

Ψ = ρ
ε1+

1−ε1
2

1 ρ
1−ε1

2
2 e

i

(
d∑
i=1

εiκixi+
1−εi

2
δi

) χ

r
d∑
i=1

εiκ̂iσiχ

 , (3.50)

where δi (i = 1(1)d) and d = 1, 2, 3. The highest value of d clearly depends on how

many spatial dimensions the box has. There are 2d possible individual wavefunctions,

for all possible combinations with εi(i = 1, .., d) = ±1. The wavefunction inside the

box would be a superposition of those 2d kets and Fψ2,

ψ =


[
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

]
χ

d∑
j=1

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

]
σjχ

 ,

(3.51)

where δij is the usual Kronecker delta. The number of terms in row I is 2d + 1 and

that in row II is (2d + 1)× d.

3.6 Boundary Conditions

The MIT bag model boundary conditions are,

iγlψ = ψ, at xl = 0 (3.52)

iγlψ = −ψ, at xl = L, (3.53)
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for l = 1, .., d. Like the one-dimensional case, these conditions make sure the flux of

the Dirac probability current through any of the six surfaces is zero. This way we

can also avoid writing six different wavefunctions for six different regions outside the

box.

Now, the above conditions imposed together on the wavefunction given by Eq.(3.51)

for any xl gives,

 i
d∑
j=1

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂jσlσj + Fei

q̂.~r
α~ q̂jσlσj

]
χ

−i
[
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

]
σlχ



= ±


[
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

]
χ

d∑
j=1

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

]
σjχ

 .

(3.54)

Equating row I we get,

i
d∑
j=1

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂jσlσj + Fei

q̂.~r
α~ q̂jσlσj

]

= ±
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

⇒ i
d∏
i=1

(
ρδi11 eiκixi + (−1)δilρδi12 e−i(κixi−δi)

)
rκ̂l + iFei

q̂.~r
α~ q̂j

+i
d∑

j=16=l

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂jσlσj + Fei

q̂.~r
α~ q̂jσlσj

]

= ±
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~ .
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A little rearrangement yields,

d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

= ±

[
i

d∏
i=1

(
ρδi11 eiκixi + (−1)δilρδi12 e−i(κixi−δi)

)
rκ̂l + iFei

q̂.~r
α~ q̂j

+i
d∑

j=16=l

(
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

)
σlσj

]
,

(3.55)

and equating row II,

−i

[
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

]
σl

= ±
d∑
j=1

[
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

]
σj.

Post-multiplying by iσl,

d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

= ±

[
i

d∏
i=1

(
ρδi11 eiκixi + (−1)δilρδi12 e−i(κixi−δi)

)
rκ̂l + iFei

q̂.~r
α~ q̂l

+i
d∑

j=16=l

(
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

)
σjσl

]
.

(3.56)

These two equations are almost the same except for the order of multiplication of σl
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and σj in the RHS. Adding Eq. (3.55) and Eq. (3.56),

2
d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ 2Fei

q̂.~r
α~

= ±2i
d∏
i=1

(
ρδi11 eiκixi + (−1)δilρδi12 e−i(κixi−δi)

)
rκ̂l ± 2iFei

q̂.~r
α~ q̂l

±i
d∑

j=16=l

[(
d∏
i=1

(
ρδi11 eiκixi + (−1)δijρδi12 e−i(κixi−δi)

)
rκ̂j + Fei

q̂.~r
α~ q̂j

)
(σlσj + σjσl)

]
.

(3.57)

Finally, using the anti-commutator {σl, σj} = 0 we can write,

d∏
i=1

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
+ Fei

q̂.~r
α~

= ±i
d∏
i=1

(
ρδi11 eiκixi + (−1)δilρδi12 e−i(κixi−δi)

)
rκ̂l ± iFei

q̂.~r
α~ q̂l

(3.58)

In order to substitute xl = 0 and xl = L in the above equation we need terms con-

taining (xl, κl, δl) and rest of the variables depending on a different i separately. The

easiest way to get such terms is to divide Eq.(3.58) by a product of terms that contain

all indices but i = l. Now the structure of this product depends on whether we want

to find a restriction on xl or on xi 6=l.

3.6.1 Case 1 : Length quantization along x axis

In this case, l = 1, i.e., xl = x. Dividing Eq.(3.58) by
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fl̄(xi, κi, δi) =
d∏

i=16=l

(
eiκixi + e−i(κixi−δi)

)
we get,

ρ1e
iκ1x + ρ2e

−i(κ1x−δ1) + f−1
l̄
Fei

q̂.~r
α~

= ±i
(
ρ1e

iκ1x − ρ2e
−i(κ1x−δ1)

)
rκ̂1 ± if−1

l̄
Fei

q̂.~r
α~ q̂1 (3.59)

Eq.(3.59), at x = 0, yields,

ρ1 + ρ2e
iδ1 + f−1

l̄
F = i(ρ1 − ρ2e

iδ1)rκ̂1 + if−1
l̄
F q̂1

⇒ eiδ1(irκ̂1 + 1)ρ2 = (irκ̂1 − 1)ρ1 + f−1
l̄
F
′
e−iθ1 , (3.60)

where F
′

=
√

1 + q̂1
2F and θ1 = tan−1(q̂1). Although we used the index l, f−1

l̄
is

nothing but f−1
1̄

, i.e., evaluated at xl = x.

Eq.(3.59), at x = L1, yields,

ρ1e
iκ1L1 + ρ2e

−i(iκ1L1−δ1) + f−1
l̄
Fei

q̂1L1
α~ = −i(ρ1e

iκ1L1 − ρ2e
−i(κ1L1−δ1))rκ̂1 −

if−1
l̄
Fei

q̂1L1
α~ q̂1

⇒ ei(2κ1L1−δ1)(irκ̂1 + 1)ρ1 = (irκ̂1 − 1)ρ2 + f−1
l̄
F
′
eiθ1ei

q̂1L1
α~ ei(κ1L1−δ1).

(3.61)

It is to be noted that the modulus of irκ̂1−1
irκ̂1+1

is 1 as it can be expressed as,

irκ̂1 − 1

irκ̂1 + 1
= e

i tan−1

(
2rk̂1

r2κ̂2−1

)
. (3.62)

Using this Eq.(3.60) can be re-written as,

eiδ1 =
irκ̂1 − 1

irκ̂1 + 1

ρ1

ρ2

+ f−1
l̄
F
′
e−iθ1

1

ρ2(irκ̂1 + 1)

=
ρ1

ρ2

e
i tan−1

(
2rk̂1

r2κ̂2−1

)
+O(α) (3.63)
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It is evident that |ρ1| = |ρ2| and

δ1 = tan−1

(
2rk̂1

r2κ̂2 − 1

)
+ θρ1 − θρ2 +O(α), (3.64)

where θρ1 = arg(ρ1) and θρ2 = arg(ρ2).

To find a restriction on the length along x-axis we will have to consider the other

boundary condition. Eq.(3.61) yields,

ei(2κ1L1−δ1) =
irκ̂1 − 1

irκ̂1 + 1

ρ2

ρ1

+ f−1
l̄
F
′
eiθ1ei

q̂1L1
α~ ei(κ1L1−δ1) 1

ρ1(irκ̂1 + 1)

⇒ e2iκ1L1 =

(
irκ̂1 − 1

irκ̂1 + 1

)2

+ f−1
l̄
F
′
eiθ1ei

q̂1L1
α~ ei(κ1L1−δ1) eiδ1

ρ1(irκ̂1 + 1)

⇒ e2iκ1L1 = e
2 tan−1

(
2rκ̂1

r2κ̂1
2−1

)
+O(α) (3.65)

Thus,

κ1L1 = tan−1

(
2rκ̂1

r2κ̂1
2 − 1

)
+O(α) (3.66)

Note that in the limit k → 0, θρj = 0 for j = 1, 2 which implies δ1 = κ1L1 =

tan−1
(

2rκ̂1
r2κ̂1

2−1

)
+O(α) when the potential vanishes.

Combining Eq.(3.66) and (3.61) we get,

f−1
l̄
F
′
ei(

q̂1L1
α~ +θ1) = eik1L1(irκ̂1 + 1)ρ1 − e−iκ1L1eiδ1(irκ̂1 − 1)ρ2

= ρ1(irκ̂1 − 1)− ρ2(irκ̂1 − 1)e
−i tan−1

(
2rκ̂1

r2κ̂1
2−1

)
eiδ1

= ρ1(irκ̂1 − 1)− ρ2(irκ̂1 + 1)eiδ1
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Thus,

ei(
q̂1L1
α~ +θ1) =

ρ1(irκ̂1 − 1)− ρ2(irκ̂1 + 1)eiδ1

F ′
fl̄ (3.67)

It follows from Eq.(3.67),

q̂1L1

α~
=

q̂1L1

α0`Pl
= −θ1 + arg

(
ρ1(irκ̂1 − 1)− ρ2(irk̂1 + 1)eiδ1

F ′
fl̄

)
+ 2n1π, n1 ∈ N

(3.68)

Eq.(3.68) gives the quantization of length along x-axis.

As shown for the one-dimensional Dirac equation, one would expect, in the limit k →

0, Eq.(3.68) to yield the length quantization without the influence of a gravitational

potential. In other words, Eq.(3.68) must reduce to Eq.(41) in [33]. Eq.(38) in [33]

can be re-written as,

e−iθ1 =
eiδ1(irκ̂1 + 1)− (irκ̂1 − 1)

f−1
l̄
F ′

, (3.69)

In the limit k → 0 the RHS of Eq.(3.67) yields,

ρ1(irκ̂1 − 1)− ρ2(irκ̂1 + 1)eiδ1

F ′
fl̄

=
1.(irκ̂1 − 1) irκ̂1+1

irκ̂1+1
− 1.(irκ̂1 + 1) irκ̂1−1

irκ̂1+1
.1

f−1
l̄
F ′

=
eiδ1(irκ̂1 + 1)− (irκ̂1 − 1)

f−1
l̄
F ′

Thus, from Eq.(3.69) and (3.67) we get,

ei(q̂1L1/α~+θ1) = e−iθ1 (3.70)

62



which implies

q̂1L1

α~
=

q̂1L1

α0`Pl
= −2θ1 + 2n1π, n1 ∈ N.

(3.71)

This is identical with Eq.(41) in [33].

3.6.2 Case 2 : Length quantization along y and z axes

In this case, l 6= 1, which means we divide Eq.(3.58) by

gl̄(xi, κiδi) =
d∏

i=16=l

(
ρδi11 eiκixi + ρδi12 e−i(κixi−δi)

)
and get

eiκlx + e−i(κlx−δ1) + g−1
l̄
Fei

q̂.~r
α~

= ±i
(
eiκlx − e−i(κlx−δ1)

)
rκ̂l ± ig−1

l̄
Fei

q̂.~r
α~ q̂l (3.72)

Just like case 1, Eq.(3.72), at xl = 0 and xl = Ll gives,

eiδl(irκ̂l + 1) = (irκ̂l − 1) + g−1
l̄
F
′

l e
−iθl , (3.73)

and

ei(2κlLl−δl)(irκ̂l + 1) = (irκ̂l − 1) + g−1
l̄
F
′

l e
iθlei

q̂lLl
α~ ei(κlLl−δl), (3.74)

where F
′

l =
√

1 + q̂1
2F and θl = tan−1(q̂l). Also gl̄ is assumed to be evaluate at the

point on xi axis. Clearly, i 6= l. These equations are much simpler compared to the

ones in case 1, and they are practically identical with the case without gravitational
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potential except for a different function gl̄. It is quite easy to show that,

eiδl =
irκ̂l − 1

irκ̂l + 1
+ g−1

l̄
F
′

l e
−iθl 1

irκ̂l + 1

= e
i tan−1

(
2rκ̂l

r2κ̂l
2−1

)
+O(α)

and

e2iκ1L1 =

(
irκ̂1 − 1

irκ̂1 + 1

)2

+ f−1
l̄
F
′
eiθ1ei

q̂1L1
α~ ei(κ1L1−δ1) eiδ1

irκ̂1 + 1

= e
2i tan−1

(
2rκ̂l

r2κ̂l
2−1

)
+O(α),

which imply

δl = κlLl = tan−1

(
2rκ̂l

r2κ̂l
2 − 1

)
+O(α) (3.75)

Now, if we plug δl = κlLl into Eq.(3.70) and then compare it with Eq.(3.69), we see

the following relation must hold,

q̂lLl
α~

+ θl = −θl + 2nlπ, nl ∈ N

⇒ q̂lLl
α~

=
q̂lLl
α0`Pl

= −2θl + 2nlπ, nl ∈ N (3.76)

Eq.(3.68) and (3.76) prove length quantization in all directions inside the box. For

area and volume quantization we can simply multiply the two equations,
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AN =
N∏
l=1

q̂lLl
α0`Pl

=
N∏
l=2

(2nlπ − 2θl)

(
2n1π − θ1 + arg

(
ρ1(irκ̂1 − 1)− ρ2(irκ̂1 + 1)eiδ1

F ′
fl̄

))
,

nl ∈ N

(3.77)

where N = 2 and N = 3 represent area and volume quantization.

Eq.(3.68), (3.76) and (3.77) show that the space, in presence of weak gravity, is

discrete in one, two and three dimensions.
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Chapter 4

Conclusions

4.1 Introduction

In this thesis, we have shown if we trap a particle in a one-dimensional box of size

close to the Planck length, impose a gravitational potential inside the box and then

try to measure the length of the box, the length would appear as a quantized variable

in units of α0`Pl where `Pl is the Planck length. This can be translated as the fact

that the discreteness of space holds equally for curved spacetime, as previous work

showed space is discontinuous near the Planck-scale in flat spacetime [32, 33]. We

have repeated this calculation for one, two and three-dimensional relativistic cases

and the discreteness of space seem to exist in every situation. Moreover, the presence

of the lengths being proportional to the Planck length in all cases strengthens the

claim of the existence of a minimum measurable length.

Being at an early stage of development, one of the main goals of quantum gravity

phenomenology (QGP) is to clarify to the prospective theories what is consistent

what is not, with the possible experimental search for quantum gravity effects. One of

these effects, also present within the scope of string theory, is the non-zero irreducible

uncertainties. In terms of the distance measurement, it can not be smaller than

the Plank length. The significance of this effect is a modification of momentum,

which gives rise to a Planck-scale correction to the uncertainty principle, known as

the generalized uncertainty principle (GUP). This correction adds new terms to the
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quantum mechanical differential equations, which result in new solutions. Finally,

these new solutions infer the quantization of the spatial dimensions.

4.2 Summary of the Results

To show the non-relativistic one-dimensional length quantization, we used a lin-

earized potential term, proportional to the distance, with the Schrödinger equation

for a particle in a one-dimensional box. We considered the GUP-induced term, con-

taining a third order differential operator, as a small perturbation to the original

Schrödinger equation with gravitational potential energy, and followed a perturbative

approach to solve this. The result is length quantization similar to the previous work

without gravity, but this time we get a fine structure of length quantization which is

different than the previous work.

Particle with speed close to c (high energy) are more likely to give better picture

of the structure of space near Planck length. Motivated by this fact, work has been

done before to show discreteness for a relativistic particle in a one-dimensional box

(Klein-Gordon equation) and for more than one dimension (Dirac equation). The

justification for using the Dirac equation is evident, as most of the fundamental

matter particles are fermions and the easiest equation governs them is the Dirac.

Also Dirac equations has its mathematical advantage when it comes to dealing with

two and three dimensions. In this thesis, results for flat spacetime have been extended

to cases with an additional linear potential term, which we have considered a small

perturbation and solved accordingly. The subsequent quantization results for length,

area and volume are similar to those in flat spacetime but mathematically more

complex. Although, they are transcendental equations which makes it difficult to

have explicit formulas but several numerical techniques are available to find precise

values for the quantities whenever called for by experimental data.

All of these quantization formulas reduce to the old ones in flat spacetime in the
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limit the proportionality constant in the potential term goes to zero. This proves the

robustness of the results shown in this work.

4.3 Significance of the Results

This work has two main consequences. One, these results, showing discreteness

of space, come to existence from the GUP-induced corrections to the Schrödinger,

Kein-Gordon and Dirac equations which are essential near Planck-scale. This means

the classical notion of so-called spacetime continuum collapses if we look at it through

a magnifying glass, powerful enough to see lengths of the order of 10−35 m.

Previous work showed discreteness of space in confinement without any force field,

which indicates the fundamental nature of space, at a microscopic level, is granular

in a region far from a black hole. In this work, this indication becomes even stronger

as we have not found any instances, within the scope of this research, where the

discreteness does not hold.

We have only shown the discreteness of space in the presence of weak gravity.

It surely requires a different approach other than a perturbative one to explore the

discreteness close to a massive body. Nevertheless, this work provides with useful

techniques to analyze the nature of space near Planck-scale, in slightly curved space-

time. Also, the spatial dimensions quantized as multiples of the Planck length in

presence of gravity implies that the claim of having the Planck length as the mini-

mum measurable length may be correct. In other words, we have got a GUP-version

of the Heisenberg microscope with maximum resolving power.

The other consequence is the fine structure of length quantization, found in the con-

text of the Schrödinger equation with gravity. This is somewhat similar to the fine

structure of energy levels of the hydrogen atom. The significance of this is a complex

discrete structure of space which might indicate a fractal discontinuity, addition of an

extra field reveals this finer structure. Also, a little more ambitious indication may
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direct towards the discreteness involving time coordinate. Although this is beyond

the scope of current work, we hope to explore this direction in the future.

4.4 Future Directions of Work

We noted in this thesis that the quantization formulas are complex and transcen-

dental. This makes it difficult to study them algebraically. Numerical or graphical

methods would be preferable for solving these equations for explicit length. Also,

these methods could be used for specific examples of elementary particles in given

curved backgrounds.

Future projects might include applications of our discreteness results to various

quantum mechanical systems, with the experimental signatures at scales larger than

the Planck scale. Quantization expressions for length are unbounded functions of a

natural number n. For large n, it may be possible to find experimental evidence of

discreteness at macroscopic length scales.

Finally, extension of the method used in this work for arbitrary curved spacetime

would be interesting. We have used the first term of Taylor series to describe a

linearized potential. Subsequent terms in Taylor series would give rise to a more

general curved spacetime. Hence, an arbitrary form of gravitational potential could

be analyzed following the same approach. This would still assume a fixed classical

background. A complete theory of quantum gravity, once formulated, should be

able to address the issues discussed here, with background spacetime which may

be fluctuating. In this event we hope that the results derived in this thesis would

continue to hold, at least approximately, and in the limit when such fluctuations can

be ignored.
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Appendix A

Dimensions and Relative Magnitudes

[~] = m2kgs−1

k = mkgs−2

µ = m−1

α = `Pl/~

k2m2x2

µ6α2~6
=

(mkgs−2)2(kg)2m2

(m−1)6(`Pl/~)2(m2kgs−1)6
= 1

km

µ3~2

(1 + µα~)

µ2α2~2

µα~ = m−1(`Pl/~)~ = 1

km

µ3~2
=

(mkgs−2)kg

(m−3)(m2kgs−1)2
= 1

ε can be considered as having the dimension of 1/k.
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~ ∼ 10−34m2kgs−1

`Pl ∼ 10−35m

m ∼ 10−30kg

x ∼ 10`Pl

(1)E ∼ 10−30 × (3× 108)2 ≈ 10−30+17 ≈ 10−13kgm2s−2 (rest energy of an electron)

(2)
k2m2x2

µ6α2~6
∼ k2

10−30×2 × 100l2pl × 10−2×34

8× 10−30×3 × 10−13×3`2
Pl

≈ k2 10−60−68+2+90+39

8
≈ 10−4k2

(3)
k2m2

µ6~4

(
(1 + µα~)

µ2α2~2

)2

µα~ ∼
√

2mE

~2

`Pl
~
~ ≈
√

2× 10−30 × 10−13 × 1034 × 10−35 ≈ 10−22.5 ≈ 10−23

k2m2

µ6~4

(
(1 + µα~)

µ2α2~2

)2

∼ k210−30×2 × 10−34×2

8× 10−30×3 × 10−13×3

(
1 + 10−23

10−23×2

)2

≈ 1090+39−60−68+92

8
≈ 1094k2

(4)
2k2m

µ3~2

(
(1 + µα~)

µ2α2~2

)
≈ k210−30 × 10−34

23/2 × 10−30× 3
2 × 10−13× 3

2

(
1 + 10−23

10−23×2

)
≈ 1045k2

(5)
2k2mx

µ3α~3
∼ k210−30 × 10`Pl × 10−34

23/2 × 10−30×2× 3
2 × 10−13× 3

2 × `Pl
≈ k2 2

23/2
10−64+1+45+19.1 ≈ k2.

(A.1)
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Appendix B

Dimension Check for k and Comparison with α

k2 <<
µ6α2~6

m2x2

dim

[
µ6α2~6

m2x2

]
=

(
1
m

)6 ( `Pl
~

)2 ~6

kg2m2

=
m2~4

kg2m8

=
m2(m2kgs−1)4

kg2m8

=
m10kg2s−4

m8

=
m4kg2s−4

m2

[k] =
m2kgs−2

m[
Energy

length

]
=
m
(
kg
(
m
s2

))
m

.

The underlying assumption of the perturbative approach is that the perturbation
must be very small compared to the unperturbed wavefunction, i.e., kψ1 < ψ0∣∣∣∣kψ1

ψ0

∣∣∣∣2 = ε2k2 +
k2m2x2

µ6α2~6
+
k2m2

µ6~4

(
(1 + µα~)

µ2α2~2

)2

+
2εk2m

µ3~2

(
(1 + µα~)

µ2α2~2

)
)− 2εk2mx

µ3α~3
.

The term with the highest order of magnitude is k2m2

µ6~4

(
(1+µα~)
µ2α2~2

)2

. Setting this as

<< 1 we get

k2 <<
µ6~4

m2

(
µ2α2~2

(1 + µα~)

)2

≈ 10−94

⇒ k << 10−47.
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Taking x ∼ 10`Pl, (
α ∼ α0`Pl

~
≈ 1× 10−35

10−34
≈ 10−1 = 0.1

)
.

This means k can be considered as smaller than α.
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Appendix C

Derivatives

C.1 Computation of some useful quantities

ψ0(E, k.x) = C1Ai(−ξ) + C2Bi(−ξ)

=
C1√
π
ξ−1/4 sin

(
2

3
ξ

3
2 +

π

4

)
+
C2√
π
ξ−1/4 cos

(
2

3
ξ

3
2 +

π

4

)
(C.1)

= C1ψ
I
0 + C2ψ

II
0 ,

where ξ =
(

2m
~2
) 1

3 k−
2
3 (E − kx).

dξ

dx
=

(
2m

~2

) 1
3

k−
2
3 (−k) = −

(
2m

~2

) 1
3

k
1
3 (C.2)

dξ

dE
=

(
2m

~2

) 1
3

k−
2
3 (C.3)

dψ2
0

dx2
=

d

dx

(
dψ0

dξ

dξ

dx

)
=

d

dx

(
dψ0

dξ

)
dξ

dx
+
dψ0

dξ

d

dx

(
dξ

dx

)
=

d

dξ

(
dψ0

dξ

)
dξ

dx

dξ

dx
+ 0

=

(
dξ

dx

)2
d

dξ

(
dψ0

dξ

)
⇒ d3ψ0

dx3
=

d

dx

((
dξ

dx

)2
d2ψ0

dξ2

)
=

(
dξ

dx

)3
d3ψ0

dξ3
(C.4)

dψ0

dE
=
dψ0

dξ

dξ

dE
(C.5)

.
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d

dx

(
dψ0

dE

)
=

d

dx

(
dψ0

dξ

dξ

dE

)
=

d

dx

(
dψ0

dξ

)
dξ

dE
+
dψ0

dξ

d

dx

(
dξ

dE

)
=

d

dξ

(
dψ0

dξ

)
dξ

dx

dξ

dE
+ 0

=
d2ψ0

dξ2

dξ

dx

dξ

dE

⇒ d2

dx2

(
dψ0

dE

)
=

d

dx

(
d

dx

dψ0

dE

)
=

d

dx

(
d2ψ0

dξ2

dξ

dx

dξ

dE

)
=

d

dx

(
d2ψ0

dξ2

)
dξ

dx

dξ

dE
+
d2ψ2

0

dξ2

d

dx
(
dξ

dx
)
dξ

dE
+
d2ψ2

0

dξ2

dξ

dx

d

dx
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dξ

dE
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=

d

dξ

(
d2ψ0

dξ2

)(
dξ

dx

)2
dξ

dE
+ 0 + 0

=
d3ψ0

dξ3

(
dξ
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)2
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(C.6)

d3

dx3

(
dψ0

dE

)
=

d

dx

(
d2

dx2

(
dψ0

dE

))
=

d

dx

(
d3ψ0
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(
dξ

dx

)2
dξ

dE
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d

dx
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d3ψ0

dξ3

)(
dξ

dx
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dE
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d
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dξ3

)(
dξ
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)3
dξ

dE

=
d4ψ0

dξ4

(
dξ
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)3
dξ
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(C.7)

79



C.2 Calculation of derivatives required in sec 2.3.1

1.
dψ0

dξ
= C1

dψI0
dξ

+ C2
dψII0
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4
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(C.8)
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4.
d4ψ0

dξ4
=

C1√
π
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3

16
ξ−5/4 + ξ7/4

)
sin
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2

3
ξ3/2 +

π

4
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− 2ξ1/4 cos
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(C.10)
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