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Stars

Stars are excellent, free
laboratories.

I Blue stars on the left and
red on the right.

I The Sun consumes hydrogen
in its core – main sequence.

I Supergiants become neutron
stars.

I Giants consume hydrogen in
a shell and helium in the
core,

I And become white dwarfs.
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How big are compact objects?

White Dwarfs

Gravity yields: P0 ∼ GM2

R4

Relativistic degenerate electrons

P0 ∼
mec

2

λ3e
,M =

mp

λ3e
R3

Solving yields

R = λe
mP

mp
,M =

m3
P

m2
p

R ≈ 10, 000km,M ≈ 1.4M�

Neutron Stars

Gravity yields: P0 ∼ GM2

R4

Relativistic degenerate neutrons

P0 ∼
mnc

2

λ3n
,M =

mn

λ3e
R3

Solving yields

R = λn
mP

mn
,M =

m3
P

m2
n

R ≈ 17km,M ≈ 1.4M�
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Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

How strong can white-dwarf fields be?

Let’s calculate the expected magnetic field of a white dwarf.

I The magnetic field of the
Sun is about 50 Gauss.

I A white dwarf is the radius
of the Earth.

I Flux freezing: Φ ∝ BR2.

I B ∼ 50G (109)2 ∼
500kG = 50T.

I Magnetic Ap stars have
1 kG fields and are bigger
than the Sun.

I B ∼ 100MG = 104T.

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic White Dwarfs
Cooling White Dwarfs

White Dwarf Spectra

PG1015+014 : Left (Euchner et al. 2006), Right (Keck;Heyl)
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Axions and White Dwarfs

White dwarfs have exquisite
polarimetric observations, finding
no linear polarization to the few
percent level.
Their fields are weaker 108−9 G,
but the stars are bigger, and we
know the field geometry.

Gill, Heyl 11
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Magnetic White Dwarfs
Cooling White Dwarfs

PG 1015+015

Spectropolarimetry
constrains the structure of
magnetic field.

Euchner et al 06
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Axions and White Dwarfs

Let’s look at more strongly
magnetized white dwarfs:
PG 1031+234 and
SDSS J234605+385337.
The observed minimum
polarization of a few
percent excludes some of
the currently allowed
region for axion-like
particles.
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Magnetic White Dwarfs
Cooling White Dwarfs

SMC

47 Tucanae
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Magnetic White Dwarfs
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Cooling White Dwarfs
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Magnetic White Dwarfs
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Relaxation

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars



White Dwarfs
Neutron Stars

Magnetic Neutron Stars
Cooling Neutron Stars
Superconducting Neutron Stars

Neutron Stars

I The first neutron stars to
be identified were radio
pulsars.

I Over 2,000 are now
known.

I Lots of flavours – not
even including the
accretors.

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

♦

♦
♦

♦

♦

♦♦

♦

♦

♦ ♦

♦♦

♦

★
★ ★

★

★

★

★

★

★

★

★

★★
★

★

★
★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★★

★
★

★

★

★

★

★

★

★

★

★
★

★

★

★

★

★

★

★

★

★
★

★
★

★

★

★

★

★
★

★

★

★

★
★

■

■ ■
■

■

■ ■

♥

♥

♥

♥
♥

♥

♥

♥
♥

♥

♥ ♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥♥

♥

♥

♥

♥

♥♥

♥

♥
♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

♥

●

♦

★

■

♥

Period [sec]

Ṗ
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White Dwarfs
Neutron Stars

Magnetic Neutron Stars
Cooling Neutron Stars
Superconducting Neutron Stars

Neutron Stars

I The first neutron stars to
be identified were radio
pulsars.

I Over 2,000 are now
known.

I Lots of flavours – not
even including the
accretors.
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White Dwarfs
Neutron Stars

Magnetic Neutron Stars
Cooling Neutron Stars
Superconducting Neutron Stars

Neutron Stars

I The first neutron stars to
be identified were radio
pulsars.

I Over 2,000 are now
known.

I Lots of flavours – not
even including the
accretors.
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Magnetic Fields

S = S0 +
1

2
f µν f αβ

δ2S

δf µνδf αβ

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars
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Why does this matter?

Quasi-Tangential Region Wang, Lai 09

Heyl, Shaviv 02
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This is not subtle.

Let’s recap.

I Neutron star atmospheres
emit polarized light.

I The emission varies across
the surface.

I The rotating magnetic field
twists the polarization.

X

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars
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White Dwarfs
Neutron Stars

Magnetic Neutron Stars
Cooling Neutron Stars
Superconducting Neutron Stars

Neutron Stars

I The cumulative distribution
is the ML estimate of the
cooling curve.

I In a cluster the weight of a
white dwarf is the reciprocal
of the birthrate within the
fields that form the sample.

I Weight each successive
neutron star by the
reciprocal of the birthrate
within the volume from
which it was found.
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I Weight each successive
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Superconductivity

Superconductivity
Strong-Field QED

Consequences
Cylindrical Geometry

Superconductivity

Essmann & Träuble 1967

In a lab superconductor the
distance between vortices is
⇠ 1µm, and their size is
⇠ 100nm.

In a neutron star we have

a ⇠
r

4h
⇡eB

= 7B12pm = 19oe

and

�L =

s
mc2

8⇡q2n0
= 7⇢15fm
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Casimir Force

Discovery of an
attractive Casimir

interaction

Energy of widely spaced vortices = 0
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Consequences

I For fields less than 1012 G the flux tubes will be about
seventeen Compton wavelengths apart with large regions free
of flux tubes.

I For fields between 1012 G and 2× 1012 G, the tubes will be
evenly and closely packed (like the conventional model).

I For fields between 2× 1012 G and 5× 1012 G the flux tubes
will be either about eight or seventeen Compton wavelengths
apart forming a (probably irregular) lattice filling the entire
region.

I For stronger fields, the tubes will be evenly and closely packed
(like the conventional model).

I These bounds are qualitative as we need to model the
superconductor more accurately.
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