Probing Physics with White Dwarfs and Neutron Stars

Jeremy Heyl

15 June 2015

Students: Elisa Antolini, Ryan Goldsbury, Alysa Obertas, Dan Mazur, Javiera Parada Others: Ramandeep Gill, Jason Kalirai, Paola Marigo, Harvey Richer, Pier-Emmanuel Tremblay

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Outline

White Dwarfs

Magnetic White Dwarfs Cooling White Dwarfs

Neutron Stars

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Stars

Stars are excellent, free laboratories.

Stars

Stars are excellent, free laboratories.

 Blue stars on the left and red on the right.

Stars

Stars are excellent, free laboratories.

- Blue stars on the left and red on the right.
- The Sun consumes hydrogen in its core – main sequence.

イロン イヨン イヨン イヨン

Stars

Stars are excellent, free laboratories.

- Blue stars on the left and red on the right.
- The Sun consumes hydrogen in its core – main sequence.
- Supergiants become neutron stars.

Stars

Stars are excellent, free laboratories.

- Blue stars on the left and red on the right.
- The Sun consumes hydrogen in its core – main sequence.
- Supergiants become neutron stars.
- Giants consume hydrogen in a shell and helium in the core,

Stars

Stars are excellent, free laboratories.

- Blue stars on the left and red on the right.
- The Sun consumes hydrogen in its core – main sequence.
- Supergiants become neutron stars.
- Giants consume hydrogen in a shell and helium in the core,
- And become white dwarfs.

(4月) イヨト イヨト

How big are compact objects?

White Dwarfs

Gravity yields: $P_0 \sim \frac{GM^2}{R^4}$ Relativistic degenerate electrons

$$P_0 \sim rac{m_e c^2}{\lambda_e^3}, M = rac{m_p}{\lambda_e^3} R^3$$

Solving yields

$$R = \lambda_e \frac{m_P}{m_p}, M = \frac{m_P^3}{m_p^2}$$

 $R pprox 10,000 {
m km}, M pprox 1.4 {
m M}_{\odot}$

イロト イヨト イヨト イヨト

How big are compact objects?

White Dwarfs

Gravity yields: $P_0 \sim \frac{GM^2}{R^4}$ Relativistic degenerate electrons

$$P_0 \sim rac{m_e c^2}{\lambda_e^3}, M = rac{m_p}{\lambda_e^3} R^3$$

Solving yields

$$R = \lambda_e \frac{m_P}{m_p}, M = \frac{m_P^3}{m_p^2}$$

 $R pprox 10,000 {
m km}, M pprox 1.4 {
m M}_{\odot}$

Neutron Stars

Gravity yields: $P_0 \sim \frac{GM^2}{R^4}$ Relativistic degenerate neutrons

$$P_0 \sim rac{m_n c^2}{\lambda_n^3}, M = rac{m_n}{\lambda_e^3} R^3$$

Solving yields

$$R = \lambda_n \frac{m_P}{m_n}, M = \frac{m_P^3}{m_n^2}$$

 $R \approx 17 \mathrm{km}, M \approx 1.4 \mathrm{M}_{\odot}$

イロト イポト イヨト イヨト

Let's calculate the expected magnetic field of a white dwarf.

 The magnetic field of the Sun is about 50 Gauss.

3

Let's calculate the expected magnetic field of a white dwarf.

- The magnetic field of the Sun is about 50 Gauss.
- A white dwarf is the radius of the Earth.

< E.

Let's calculate the expected magnetic field of a white dwarf.

- The magnetic field of the Sun is about 50 Gauss.
- A white dwarf is the radius of the Earth.
- Flux freezing: $\Phi \propto BR^2$.

< E.

Let's calculate the expected magnetic field of a white dwarf.

- The magnetic field of the Sun is about 50 Gauss.
- A white dwarf is the radius of the Earth.
- Flux freezing: $\Phi \propto BR^2$.
- $B \sim 50 \text{G} (109)^2 \sim 500 \text{kG} = 50 \text{T}.$

< 1[™] >

Let's calculate the expected magnetic field of a white dwarf.

- The magnetic field of the Sun is about 50 Gauss.
- A white dwarf is the radius of the Earth.
- Flux freezing: $\Phi \propto BR^2$.
- $B \sim 50 \text{G} (109)^2 \sim 500 \text{kG} = 50 \text{T}.$
- Magnetic Ap stars have 1 kG fields and are bigger than the Sun.

- A 🖻 🕨

< 🗇 🕨

Let's calculate the expected magnetic field of a white dwarf.

- The magnetic field of the Sun is about 50 Gauss.
- A white dwarf is the radius of the Earth.
- Flux freezing: $\Phi \propto BR^2$.
- $B \sim 50 \text{G} (109)^2 \sim 500 \text{kG} = 50 \text{T}.$
- Magnetic Ap stars have 1 kG fields and are bigger than the Sun.
- ► $B \sim 100 MG = 10^4 T.$

Magnetic White Dwarfs Cooling White Dwarfs

White Dwarf Spectra

PG1015+014 : Left (Euchner et al. 2006), Right (Keck;Heyl)

| 4 回 2 4 U = 2 4 U =

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Magnetic White Dwarfs Cooling White Dwarfs

Axions and White Dwarfs

White dwarfs have exquisite polarimetric observations, finding no linear polarization to the few percent level.

Their fields are weaker 10^{8-9} G, but the stars are bigger, and we know the field geometry.

Gill, Heyl 11

| 4 同 1 4 三 1 4 三 1

Magnetic White Dwarfs Cooling White Dwarfs

Axions and White Dwarfs

White dwarfs have exquisite polarimetric observations, finding no linear polarization to the few percent level.

Their fields are weaker 10^{8-9} G, but the stars are bigger, and we know the field geometry.

Gill, Heyl 11

A (1) > A (2)

3 D

Magnetic White Dwarfs Cooling White Dwarfs

PG 1015+015

Spectropolarimetry constrains the structure of magnetic field.

イロン 不同と 不同と 不同と

filling factor:

0.05

Magnetic White Dwarfs Cooling White Dwarfs

082 26

PG 1015+015

φ=0.86 😭 0 0 $^{-1}_{0.05}$ φ=0.66 დ 0.1 0 0 $\stackrel{-1}{0.1}$ φ=0.45 0 0.1 ♀ 0 0 ä 0.1 φ=0.25 0.1 0 ä § 0.05 φ=0.05 0.1 2 SOS 50 100 B / MG cos v R_{max} / R_{WD} B / MG we

10

Euchner et al 06

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

<ロ> <同> <同> <同> < 同>

< ≣ >

Spectropolarimetry constrains the structure of magnetic field.

Magnetic White Dwarfs Cooling White Dwarfs

Axions and White Dwarfs

Let's look at more strongly magnetized white dwarfs: PG 1031+234 and SDSS J234605+385337. The observed minimum polarization of a few percent excludes some of the currently allowed region for axion-like particles.

||◆ 同 ▶ || ● ▶ || ◆ 同 ▶ ||

3

Magnetic White Dwarfs Cooling White Dwarfs

Axions and White Dwarfs

Let's look at more strongly magnetized white dwarfs: PG 1031+234 and SDSS J234605+385337. The observed minimum polarization of a few percent excludes some of the currently allowed region for axion-like particles.

→ 同 → → 三 →

_∢ ≣ ≯

Magnetic White Dwarfs Cooling White Dwarfs

Probing Physics with White Dwarfs and Neutron Stars

J. Heyl - CAP 2015

Magnetic White Dwarfs Cooling White Dwarfs

Cooling White Dwarfs

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Magnetic White Dwarfs Cooling White Dwarfs

Relaxation

J. Heyl - CAP 2015

Probing Physics with White Dwarfs and Neutron Stars

э

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

 The first neutron stars to be identified were radio pulsars.

・ロト ・回ト ・ヨト ・ヨト

æ

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

- The first neutron stars to be identified were radio pulsars.
- Over 2,000 are now known.

・ロト ・回ト ・ヨト ・ヨト

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

- The first neutron stars to be identified were radio pulsars.
- Over 2,000 are now known.
- Lots of flavours not even including the accretors.

・ロト ・回ト ・ヨト ・ヨト

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Magnetic Fields

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

・ロン ・回と ・ヨン ・ヨン

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Why does this matter?

・ロ・ ・ 日・ ・ 田・ ・ 田・

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Why does this matter?

Heyl, Shaviv 02

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Why does this matter?

・ロ・ ・ 日・ ・ 田・ ・ 田・

Heyl, Shaviv 02

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

This is not subtle.

Let's recap.

 Neutron star atmospheres emit polarized light.

イロン イヨン イヨン イヨン

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

This is not subtle.

Let's recap.

- Neutron star atmospheres emit polarized light.
- The emission varies across the surface.

イロト イヨト イヨト イヨト

3

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

This is not subtle.

Let's recap.

- Neutron star atmospheres emit polarized light.
- The emission varies across the surface.
- The rotating magnetic field twists the polarization.

- 4 回 2 - 4 □ 2 - 4 □

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

This is not subtle.

Let's recap.

- Neutron star atmospheres emit polarized light.
- The emission varies across the surface.
- The rotating magnetic field twists the polarization.

(4回) (4回) (4回)

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

XIPE

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

XIPE

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

 The cumulative distribution is the ML estimate of the cooling curve.

・ロト ・回ト ・ヨト ・ヨト

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

- The cumulative distribution is the ML estimate of the cooling curve.
- In a cluster the weight of a white dwarf is the reciprocal of the birthrate within the fields that form the sample.

イロト イヨト イヨト イヨト

3

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

- The cumulative distribution is the ML estimate of the cooling curve.
- In a cluster the weight of a white dwarf is the reciprocal of the birthrate within the fields that form the sample.
- Weight each successive neutron star by the reciprocal of the birthrate within the volume from which it was found.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Neutron Stars

- The cumulative distribution is the ML estimate of the cooling curve.
- In a cluster the weight of a white dwarf is the reciprocal of the birthrate within the fields that form the sample.
- Weight each successive neutron star by the reciprocal of the birthrate within the volume from which it was found.

<**□** > < ⊇ >

< ∃⇒

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Superconductivity

In a lab superconductor the distance between vortices is $\sim 1\mu$ m, and their size is ~ 100 nm.

Essmann & Träuble 1967

A ₽

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Superconductivity

Essmann & Träuble 1967

In a lab superconductor the distance between vortices is $\sim 1\mu$ m, and their size is ~ 100 nm.

In a neutron star we have

$$a\sim\sqrt{rac{4h}{\pi eB}}=7B_{12}{
m pm}=19$$
 Å

< 🗇 > < 🖃 >

< E.

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Superconductivity

Essmann & Träuble 1967

In a lab superconductor the distance between vortices is $\sim 1\mu{\rm m},$ and their size is $\sim 100{\rm nm}.$

In a neutron star we have

$$a \sim \sqrt{\frac{4h}{\pi eB}} = 7B_{12} \mathrm{pm} = 19 \mathrm{k}$$

and

$$\lambda_L = \sqrt{\frac{mc^2}{8\pi q^2 n_0}} = 7\rho_{15} \mathrm{fm}$$

< 🗇 > < 🖃 >

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Casimir Force

J. Heyl – CAP 2015 Probing Physics with White Dwarfs and Neutron Stars

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Circle Packing

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Circle Packing

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Consequences

 For fields less than 10¹² G the flux tubes will be about seventeen Compton wavelengths apart with large regions free of flux tubes.

イロト イヨト イヨト イヨト

3

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Consequences

- For fields less than 10¹² G the flux tubes will be about seventeen Compton wavelengths apart with large regions free of flux tubes.
- ► For fields between 10¹² G and 2 × 10¹² G, the tubes will be evenly and closely packed (like the conventional model).

イロト イポト イヨト イヨト

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Consequences

- For fields less than 10¹² G the flux tubes will be about seventeen Compton wavelengths apart with large regions free of flux tubes.
- ► For fields between 10¹² G and 2 × 10¹² G, the tubes will be evenly and closely packed (like the conventional model).
- ► For fields between 2 × 10¹² G and 5 × 10¹² G the flux tubes will be either about eight or seventeen Compton wavelengths apart forming a (probably irregular) lattice filling the entire region.

イロト イポト イラト イラト 一日

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Consequences

- For fields less than 10¹² G the flux tubes will be about seventeen Compton wavelengths apart with large regions free of flux tubes.
- ► For fields between 10¹² G and 2 × 10¹² G, the tubes will be evenly and closely packed (like the conventional model).
- ► For fields between 2 × 10¹² G and 5 × 10¹² G the flux tubes will be either about eight or seventeen Compton wavelengths apart forming a (probably irregular) lattice filling the entire region.
- For stronger fields, the tubes will be evenly and closely packed (like the conventional model).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Magnetic Neutron Stars Cooling Neutron Stars Superconducting Neutron Stars

Consequences

- For fields less than 10¹² G the flux tubes will be about seventeen Compton wavelengths apart with large regions free of flux tubes.
- ► For fields between 10¹² G and 2 × 10¹² G, the tubes will be evenly and closely packed (like the conventional model).
- ► For fields between 2 × 10¹² G and 5 × 10¹² G the flux tubes will be either about eight or seventeen Compton wavelengths apart forming a (probably irregular) lattice filling the entire region.
- For stronger fields, the tubes will be evenly and closely packed (like the conventional model).
- These bounds are qualitative as we need to model the superconductor more accurately.