Precision Measurement of Li Hyperfine & Fine Structure

June, 2015

Canadian Association of Physics, Edmonton

R. Ashby, J. Clarke, E. Chemali, B. Lu, B. Jian, H. Ming, G. Noble , J. Walls, J. Wang, H. Yang

Physics Dept., York University

Website: wvanwijngaarden.info.yorku.ca

Why study Li⁺/Li?

1. Test QED

Effects scale as $Z^4\alpha^3$ times Rydberg energy. QED effects order of magnitude greater than in H or He [1,2].

2. Theoretical Advances

Two & 3 electron systems now "well understood" using Hylleraas Variational calculations [2,3].

3. Nuclear Probe

Measured isotope shifts + theory yield relative nuclear charge radii r_c with accuracies < 1 x 10⁻¹⁷ meter, more accurate than electron scattering.

$$E_{nuc} = 2\pi/3 \ Z \ e^2 \ r_c^2 < \Sigma_i \ \delta \ (r_i) >$$

Ideal for studying halo neutrons ^{6,7,8,9,11}Li [4], relevant in light of discrepancies determining proton radius [5].

- 1. WvW & B. Jian Eur. Phys. J. 222, 2057 (2013)
- 2. Z. C. Yan et al, PRL **100**, 243002 (2008)
- 3. M. Puchalski et al, PRA **79**, 032510 (2009)
- 4. W. Nörterhauser et al, PRA, **83**, 012516 (2011)
- 5. A. Antognini et al, J. Phys. **312**, 032002 (2011)

I: Neutral Lithium Fine/Hyperfine Levels of Li D Lines (units of MHz)

Excitation of ⁶Li D Lines

Excitation of 6,7Li D Lines

Determining Line Center of ⁷Li D2 Line Peak 12

2P _{3/2} Hyperfine Level	Predicted Contribution	Observed Contribution
$\mathbf{F} = 0$	28%	29%
F = 1	36%	34%
F = 2	36%	37%

2P Fine Structure Splitting

	Interval (MHz)	Technique
⁶ Li	10052.964 ± 0.050	Our Work [1]
	10053.435 ± 0.021	Frequency Comb [2]
	10052.779 ± 0.017	Frequency Comb [3]
	10052.477 ± 0.008	Theory [5]
	10052.72 ± 0.06	Theory [6]
⁷ Li	10053.184 ± 0.058	Optical Double Resonance [4]
	10053.119 ± 0.058	Our work [1]
	10052.837 ± 0.022	Frequency Comb [2]
	10053.310 ± 0.017	Frequency Comb [3]
	10050.932 ± 0.008	Theory [5]
	10053.25 ± 0.06	Theory [6]

- 1. G. Noble et al, PRA 74 012502 (2006)
- 2. C. Sansonetti et al, PRL 107, 023001 (2011)
- 3. R. Brown et al, PRA 87, 032504 (2013)
- 4. H. Orth et al, Z. Phys. A 273, 221 (1975)
- 5. M. Puchalski et al, PRA **79**, 032510 (2009)
- 6. M. Puchalski et al, PRL **113**, 073004 (2014)

^{6,7}Li Relative Nuclear Charge Radius

$\Delta r_c^2 = r_c^2 (^6L$	i) - $r_c^2(^7Li) = (ISC)$	$P_{\text{meas}} - E_{\text{mass shift}}) /$	C _{theory} [1]
Reference	Transition	$\Delta r_c^2 (fm^2)$	Average $\Delta r_c^2 (fm^2)$
Riis [2]	$Li^{+} 2 {}^{3}S_{1} - 2 {}^{3}P_{0}$	0.78 ± 0.06	
	$Li^{+} 2 {}^{3}S_{1} - 2 {}^{3}P_{1}$	+ 2 ${}^{3}S_{1} - 2 {}^{3}P_{1}$ 0.78 ± 0.07	
	$Li^{+} 2 {}^{3}S_{1} - 2 {}^{3}P_{2}$	0.64 ± 0.06	
GSI/	Li 2 ${}^{2}S_{1/2}$ – 3 ${}^{2}S_{1/2}$	0.72 ± 0.08	0.721 ± 0.022
TRIUMF[3]		0.73 ± 0.02	0.731 ± 0.022
Our Work [4]	Li D1 line	0.79 ± 0.03	0.726 ± 0.024
	Li D2 line	0.69 ± 0.04	0.730 ± 0.024
NIST [5]	Li D1 line	0.67 ± 0.01	0.700 + 0.002
	Li D2 line	0.70 ± 0.01	0.700 ± 0.003
		Unweighted Average	$\boldsymbol{0.725 \pm 0.017}$
		e- Scattering [6]	0.79 ± 0.25

Using r_c (⁶Li) = 2.53 ± 0.03 fm $\Rightarrow \Delta r_c = 0.150 \pm 0.003$ fm

- 1. W. Nörterhauser et al, PRA, 83, 012516 (2011)
- 2. E. Riis et al, PRA **49**, 207 (1994)
- 3. B. Bushaw et al, PRL 91, 043004 (2003)
- 4. G. Noble et al, PRA 74 012502 (2006)
- 5. R. Brown et al, PRA, 87, 032504 (2013)
- 6. H. de Vries et al, At. Nucl. Tables 36, 495 (1987)

II. Relevant Li⁺ States Fine & Hyperfine Levels

⁶Li⁺ 1s2s ${}^{3}S_{1}(F) \rightarrow 1s2p {}^{3}P_{2}(F')$ with 9.2 GHz EOM

⁶Li⁺ Hyperfine Intervals

State	Interval	Interval	Technique
	$\mathbf{F} \rightarrow \mathbf{F'}$	(MHz)	
$1s2s {}^{3}S_{1}$	$2 \rightarrow 1$	$6,003.600 \pm 0.050$	Microwave [1]
		$6,003.66 \pm 0.51$	Our Expt [2]
		$6{,}003.614 \pm 0.024$	Theory [3]
	$1 \rightarrow 0$	$3,\!001.780\pm0.050$	Microwave [1]
		$3,\!001.827 \pm 0.47$	Our Expt [2]
		$3,\!001.765 \pm 0.038$	Theory [3]
1s2p ³ P ₁	$2 \rightarrow 1$	$2,888.98 \pm 0.63$	Our Expt [2]
		$2,\!888.327 \pm 0.029$	Theory [3]
	$1 \rightarrow 0$	$1.316.06 \pm 0.59$	Our Expt [2]
		$1,\!317.649 \pm 0.046$	Theory [3]
1s2p ³ P ₂	$3 \rightarrow 2$	$4,127.16 \pm 0.76$	Our Expt [2]
		$4,\!127.882\pm0.043$	Theory [3]
	$2 \rightarrow 1$	$2,857.00 \pm 0.72$	Our Expt [2]
		$2,858.002 \pm 0.060$	Theory [3]

- 1. J. Kowalski et al, Hyp. Int. 15 159 (1983)
- 2. J. Clarke et al, PRA 67, 12506 (2003)
- 3. E. Riis et al, PRA 49 207 (1994)

Proposed Fine Structure Measurement

Measure fine structure to < 0.1% of transition natural linewidth determines α to ~ 1 ppb

- 1) Optical Pumping depletes $1s2s {}^{3}S_{1}$ (F=0) level
- 2) AO shifted laser excites $1s2s {}^{3}S_{1}$ (F=1) $\rightarrow 1s2p {}^{3}P_{1}$ (F=2) & microwaves excite $1s2p {}^{3}P_{1}$ (F=2) $\rightarrow {}^{3}P_{2}$ (F=1) transition
- 3) Excite $1s2s {}^{3}S_{1}$ (F=0) level & detect fluorescence

Ongoing Work: Measure ⁶Li⁺ 1s2p ³P Hyperfine Interval

Conclusions

<u>Neutral Li</u>

- 2P fine structure theory now agrees with experiment
- Halo neutrons in ¹¹Li different mass/charge nuclear radius
- Optically measured isotope shifts & theory yield relative nuclear charge radii to parts times 10⁻¹⁸ meter.

We understand how Li electrons interact with nucleus better than how macroscopic electron beam scatters from a nucleus – an impressive achievement of atomic theory & experiment.

Lithium Ion

- Hyperfine intervals of ⁶Li⁺ 1s2p ³P state order of magnitude more accurate than previous work
- Discrepancy of 1s2p Li⁺ fine structure resolved
- Excellent agreement between theory & experiment

Ongoing Work

 Improve 1s2p ³P Li⁺ fine/hyperfine structure by order of magnitude to test QED & develop independent measurement of α to ppb.

Fine Structure Constant α

Motivation

Test QED & check possible time evolution of α predicted by cosmology & field theory. [1]

g-2 Experiment

Precise measurement of electron trapped in Penning trap determines g-2 to less than 1 part in 10^{12} [2]. QED then gives α with relative uncertainty of 4 x 10^{-10} [3]. This disagrees with Quantum Hall, AC Josephson experiments etc. [4].

Atom Interferometry

 $\alpha^2 = 2R/c M/m h/M$

- 1. Rydberg constant *R* with relative uncertainty of 7 x 10^{-12} [5]
- 2. Ratio of Atomic Mass M to electron mass m with relative uncertainty of 5 x 10⁻¹⁰ [6]
- 3. h/M found from recoil velocity $v_{rec} = \hbar k/M$ using atom interferometer when ultracold Cs or ⁸⁷Rb absorbs photon [4,7].

 $1/\alpha = 137.03599904(9)$ agrees with g-2 experiment.

- 1. M. Murphy et al, PRL **99**, 239001 (2007)
- 2. D. Hanneke et al, PRL 100, 120801 (2008)
- 3. T. Aoyama et al, PRL 99, 110406 (2007)
- 4. A. Wicht et al, Phys. Scr. **T102**, 82 (2002)
- 5. P. Mohr et al, Rev. Mod. Phys. 80, 633 (2008)
- 6. T. Udem et al, PRL **79**, 2646 (1997)
- 7. R. Boucendira et al, PRL **106**, 080801 (2011)