Nanostructure of $(Yb_xY_{1-x})_2O_3$ Films Revealed With BF and HAADF STEM

Jean-François Bisson and Gilles Patriarche*

Groupe de recherche sur les couches minces et la photonique, Département de physique et astronomie, Université de Moncton

*Laboratoire de photonique et de nanostructures, Centre national, de la recherche scientifique - UPR20, 91460 Marcoussis, France

2015 CAP Congress Edmonton, June 15, 2015

Materials for High-Power Lasers

- Solid-state lasers have reached >10-kW-grade power in one or a few transverse modes.
- The maximum average power is limited by overheating and thermal fracture:
 - Need laser architecture with efficient cooling
 - Need for materials with a high thermal shock parameter

$$R_t = \frac{K_{th}(1-\nu)}{\alpha E} S_t$$

K_{th}: thermal conductivity
v: Poisson coefficient,
α: thermal expansion coefficient [°C-1] E:
Young Modulus [Pa], S_t: fracture limit [Pa]

State-of-the-art crystalline material is: Yb³⁺:Y₃Al₅O₁₂

Y₂O₃: a Great Host for High-Power Lasers

- Low phonon energy (550 cm⁻¹ vs 700 cm⁻¹ for YAG) => helps reduce non-radiative multiphonon relaxation;
- High density of rare-earth substitution sites (twice as YAG)
- High melting point: 2430°C (YAG: 1930°C): Difficult to grow using traditional methods (Chrochralskii)
- Cubic material (optically isotropic): can be made transparent in the polycristalline form using the ceramic process or thin-film deposition techniques

Crystallographic Structure of Y₂O₃ Similar to CaF₂

The CaF₂ lattice is face-centered-cubic (FCC).

Crystallographic Structure of Y₂O₃

Similar to CaF_2 but with one fourth of the O²⁻ removed

CCMP

 $Y_{32}O_{48}$: 48 O²⁻ sites = 64 -16 "vacancies" ; 32 Y³⁺ sites = 24C₂+8C_{3i} Brava is lattice: BCC; T_h⁷ (206)

Thin-Film Synthesis

Reactive crossbeam laser ablation

Pulsed laser deposition

STEM

- 70-nm-thick specimens prepared by focused ion beam.
- JEOL 2200FS (200 kV, I_p=150 pA), probe dia.=0.12 nm, Depth of field : 10 nm

- BF contrast is based on interference between diffraction orders at the detector (coherent) imaging.
- HAADF contrast :
 - Detection angle: 100 and 170 mrad.
 - Intensity proportional to Z^α, where α=1.7
 - Higher signal for Y (Z=39) or Yb (Z=70) than O (Z=8).

STEM-HAADF Picture of As-Grown Coatings

0.5 μm

X-ray diffraction patterns with various annealing conditions

BF and HAADF images, <111> Zone axis Bright-Field STEM HAADF STEM

BF image suggests the presence of vacancies with long-range order, but these are absent in the HAADF image.

Different Long-Range Order in HAADF Images

Is this the conventional structure of Y_2O_3 ?

Electron Diffraction Pattern <111>

(2p+1, 2q+1, 0) peaks forbidden for the Y₂O₃ bixbyite structure

Different crystallographic structure? or Effect of secondary elastic scattering?

1112

Simulation of the Y₂O₃ Structure

Ion sites	Wyckoff position	Number of sites in elementary cell	Coordinate x/a	Coordinate y/a	Coordinate z/a
Y ³⁺	b (sym. C _{3i})	8	1/4	1/4	1/4
	d (sym. C ₂)	24	X _A	0	1/4
O^{2-}	e	48	$3/8 + x_0$	$1/8 + y_0$	$3/8 + z_0$

 $a=1.06 \text{ nm}, x_0 = 0.0157, y_0 = 0.0270, z_0 = 0.0054, x_A = -0.0327 < 111 > 0.0054$

Ref: Hanic et al., Acta Cryst B40 : 76-82, 1984

- 1) Dark spots in BF coincide with the absence of oxygen ions;
- 2) Dark spots HAADF correspond a distortion of the cationic network.

Summary

- BF and HAADF images of Yb: Y₂O₃ thin films reveal complimentay informations, each revealing a different pattern of dark spots organized in a honeycomb structure:
 - HAADF images show periodic distortion of the cationic columns; O²⁻ was not detected.
 - BF images reveal the absence of oxygen ions at specific crystallographic columns;
 - Combining BF and HAADF modes makes it possible to get a comprehensive picture of the atomic structure of a material.

Acknowledgments

- David Troadec, CNRS, France
- Ralf Bruëning, Mount-Alison University, NB
- Natural Sciences and Engineering Research Council (NSERC)
- New-Brunswick Innovation Foundation (NBIF)
- Canada Foundation for Innovation (CFI)
- Faculté des études supérieures et de la recherche de l'Université de Moncton

Crystallographic Structure of Y_2O_3 $Y_{32}O_{48}$ 32 Y³⁺ sites= 24C₂+8C_{3i} 48 O²⁻ sites = 64 - 16 "vacancies"

Bravais lattice: body centered cubic; T_h^7 (206) space group

Luminescence Spectra from Yb³⁺

- Significant broadening and little structure for the amorphous material => Suggests that the crystal field around Yb ions is inhomogeneous
- 2. Spectra narrow as the size of the crystallites increases

Upconversion Luminescence From Other Trivalent Rare-Earth Ions

Luminescence Decay Curves

- Non-exponential decay: can be explained by the presence of randomly distributed traps in the material (Cf. J.F. Bisson, JOSA B, 32(5). 757-766, 2015);
- Important jump in luminescence intensity after melting the material;
- Lifetime at long times in the order of : τ =0.93 ms (about the same for all cases).

