2015 CAP Congress

Edmonton, AB

2015-06-16

Coincidence Measurements using the SensL MatrixSM-9 Silicon-photomultiplier Array

T.D. Beattie§, S.K. Gryba§, C.L. Henschel§, Z. Papandreou, J. Sanchez-Fortun Stoker*, A.Yu. Semenov

University of Regina

* Funded by Fedoruk grant § Funded by NSERC Engage grant

Outline

- Silicon photomultipliers (SiPMs) aka Multi-pixel photon counters (MPPCs)
 - Photodetector that converts light into a current.
- Plant Imaging: (large-area devices)
 - PhytoPET detector
 - Magnetic-field resistant detectors
 - Custom configuration
- Current work at the U of Regina.

SiPMs

- Photodiode: p-n junction or PIN structure.
- Photon incident on depletion layer can cause inner photoelectric effect.
- APD Geiger mode: if $V \ge V_{br}$ avalanche occurs (electrons and holes), subsequently quenched.
- Charges swept from the junction by the built-in electric field of the depletion region: current generated - holes move to anode, electrons to cathode.

SiPMs/MPPCs at work

Particle produces light flash

photosensor Light falls

current Avalanche turns Light into a

Signal is digitized

Algorithms: form image

Applications of SiPMs

Tomato plant

Plant Imaging

6

- Pioneer new imaging tools in fundamental areas that include: adaptation to environmental stresses, disease, efficient nutrient and water use, and seed quality, enabling the development of improved fertilizers and microbial inoculants.
- Practicalities:
 - R&D at UofR, deployment at Fedoruk. Portable solution?
 - Define application parameters
 - Develop software algorithms: DOI, LOR, resolution, visualization.
 - Hybrid detector systems: PMT- and SiPM-based solutions
- Key requirements: clean signals and fast timing towards sub-mm image resolution.

PhytoPET System (Hamamatsu)

- Partnership: Jefferson Lab RD&I Group.
- Multi-anode PMT detector heads - no SiPMs
- Custom electronics
- Proven performance (at Duke U.)
- CRADA contract: import to Saskatchewan
- Future: magnetic-immunity by using SiPMs or dSiPMs.

Turn-key System (SensL)

- Detector
- Frontend
- Evaluation

MatrixSM-9 Front End Readout Module Electronics Board MatrixSM-9X1 Detector Head

Coincidence Board (supports up to 16 modules)

Coincidence, DAQ, Software: using 90Sr, 22Na

Singles

- Common plastic scintillator
- Teflon wrapped, greased
- Noise, 90Sr measurements
- Characterise OLD/NEW mods

(66723 events, 60 s)

(Frequencies)

PIXEL 0 → PIXEL 1 → PIXEL 15

Coincidence

Gain uniformity test

- Coincidence window 20 ns
- 90Sr source, teflon-wrapped plastic scintillator, 600 s run time
- Multiple array/pixel thresholds
- Multiple configurations
- Array gain-uniformity tests
- Multiple sources: ²²Na, etc.

Acknowledgements

- Prof. Z. Papandreou, Dr. A. Yu. Semenov
- Sylvia Fedoruk Canadian Centre for Nuclear **Innovation**
- NSERC Engage
- NSERC Discovery, DOE infrastructure
- Jefferson Lab

Thank you

Backup Slides

Photodiode

Cathode

Anode

- Photodiode: p-n junction or PIN structure.
- **Depletion region**: an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away.
- Incident photon can cause inner photoelectric effect in the depletion region.
- Charges swept from the junction by the built-in electric field of the depletion region: we have a **current**: holes move to anode, electrons to cathode.

14

PET in Plants

- o a **nuclear imaging** technique:
 - Positron-annihilation gamma from a radio-isotope tracer introduced to plant via biologically active molecule
 - 3D image functional processes via computer algorithms

 modular gamma-ray imaging detectors to allow for different plant geometries.

Common tracers: 11C, 52Fe

MPPCs: around leaves

Tomato plant

Courtesy Jefferson Lab

PET: Plant Imaging Opportunities

	Humans	Plants
Ethics Committee		X
GMP (Drug QA)		X
Clinical Trial		X
Radiochemical		
Synthesis		
Resolution	~mm	~mm, or
		~0.1mm

Field is where small animal imaging was ~15 years ago

Achievable Image Resolution

~ few mm

~ few tenths mm

Plans and Partners

- It's stressful out there for plants:
 - Bugs chew on them
 - they get fungal infections
 - they can get too hot or cold
- JLab and Duke Phytotron Lab
 - Environmetal growth chambers
 - Study nutrients ...to pollutants in the air
 - E.g. common barley plant response to higher levels of CO₂ in the atmosphere
 - E.g. stress to bugs munching on plant
 - PhytoPET and PhytoBeta systems
 - Modular, custom-fit sensors around plants, non-intrusive, reflective

Mechanical design
Detector development
Image reconstruction
Lab implementation
Data analysis
Detector integration

MPPC Advantages & Issues

- Low bias, compact, high gain
- Replace PMT and GM
- Breakdown voltage
 - Needed to know gain
- Temperature dependence
 - Affects breakdown point
- Dark current (noise)

Stable operation
 Avalanche Photodiode

IV Curves

- Semiconductor diode's behavior in a circuit is given by its I-V graph
- Depletion zone acts like insulator
- Develop method to locate V_{BR} (large number of electrons and holes are created at, and move away from the p-n junction)

Hamamatsu sipm10 ampON 130628 23deg

sipm10 ampON 130628 m03deg

19

SensL

- 30-34 V operation
- 20 mV/deg factor
- Ceramic packaging
- TEC cooling
- Form factor 200µm deadspace
- 13% energy resolution at 511keV using L(Y)SO for nuclear medicine
- Gain & optical uniformity <10%</p>
- 250ps CRT for L(Y)SO
- on-on-p and p-on-n substrates:
 - 40% PDE

All SensL products are designed for high volume, low cost, and high uniformity, and are manufactured in a commercial CMOS foundry.

MPPC Circuits

- Amplification
- Shaping
- Discrimination
- Digitization

Scrambled Crosswire Architecture

