Chiral symmetry breaking and the Quantum Hall effect in monolayer graphene

> Malcolm Kennett (Simon Fraser University)

Collaborators: Bitan Roy, Sankar Das Sarma (Condensed Matter Theory Center, University of Maryland)

B. Roy, M. K., and S. Das Sarma, Phys. Rev. B 90, 201409(R) (2014).

Motivation and Summary

- Integer Quantum Hall states are observed at fillings $\nu = 0$ and $\nu = \pm 1$ in graphene that cannot be explained within a picture of non-interacting electrons: unexpected fillings and gap too large to be Zeeman splitting
- We suggest that in a magnetic field, electron-electron interactions can induce ordered phases via "magnetic catalysis". The order parameters correspond to chiral (sublattice) symmetry breaking Dirac masses, leading to formation of gaps for $\nu = 0, \pm 1$

 $\nu = 0$: Coexisting easy-plane Neel order and easy-axis ferromagnetism $\nu = \pm 1$: Coexisting charge density wave and easy-axis Neel order

• We calculate gaps for these orders and find good agreement with experiment for both $\nu = 0$ and $\nu = \pm 1$

Graphene

- Two triangular sublattices: A and B
- One electron per site: half filling

 Tight binding model (Wallace, 1947) nearest neighbour hopping (t = 2.5 eV)

$$H_0 = -t \sum_{\mathbf{r}_i, j, \sigma} \left[u_{\sigma}^{\dagger}(\mathbf{r}_i) v_{\sigma}(\mathbf{r}_i + \mathbf{a}_j) + h.c. \right]$$

Energy Spectrum

$$E(\mathbf{k}) = \pm t \left| \sum_{j} e^{i\mathbf{k} \cdot \mathbf{a}_{j}} \right|$$

 a_j : nearest neighbour separations

• Lack of inversion symmetry around each site

 \implies Fermi points rather than a Fermi surface (unlike square lattice)

Emergent Dirac fermions

• Dirac cones centered on two inequivalent Dirac points: K and K'

• Low energy theory: Dirac Hamiltonian for 8 component Dirac fermions (2 spin, 2 valley, 2 sublattice)

$$H = \sigma_0 \otimes H_0, \qquad H_0 = \sum_{j=1}^2 i \gamma_0 \gamma_j \left(-i \partial_j - A_j \right)$$

- Gamma matrices $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$, units with $e, \hbar, v_F = 1$ ($v_F \sim c/300$)
- Emergent chiral symmetry (for spinless fermions) under SU(2) generators

$$\{\gamma_3,\gamma_5,i\gamma_3\gamma_5\}$$

generator of translations: $i\gamma_3\gamma_5 = \tau_3 \otimes s_0$

(σ : spin, τ : valley pseudospin, s: sublattice pseudospin)

Integer Quantum Hall Effect

• Quantized Hall conductance

Resistance vs field: GaAs [www.nobelprize.org]

• Landau levels

$$E_n = \hbar\omega_c \left(n + \frac{1}{2}\right)$$

• Degeneracy

$$eBA/h = \Phi/\Phi_0$$

Integer QHE in Graphene

• Dirac fermions in a magnetic field: relativistic Landau levels:

 $E_n = \pm \sqrt{2nB}, \qquad n = 0, 1, 2, \dots$

• Experiment:

- Weak magnetic fields: ν = ±(4n + 2) for n = 1, 2, ... Degeneracy: 2 (valley) × 2 (spin) × Φ/Φ₀ Gusynin and Sharapov, PRL 2005
- Strong magnetic fields – additional plateaux:

i) $\nu = 0, \pm 1$

⇒ Interaction driven symmetry breaking

ii) $\nu = \pm 4, \ldots$ Zeeman splitting of higher LLs

Gap for the $\nu = 0$ Hall state

Different groups techniques/substrates

Capacitance/ boron nitride Yu et al., PNAS 110, 3282 (2013)

Transport/ boron nitride Young *et al.*, Nat. Phys. 8, 550 (2012)

- Gap for $\nu = 0$ Hall state shows crossover from linear to $\sim \sqrt{B}$ sub-linear dependence on magnetic field
- Resistance (R_{xx}) decreases with tilting of magnetic field (increasing B_{||} at fixed total field)

Interactions and symmetry breaking orders

 \bullet No magnetic field: strong interactions \Longrightarrow Dirac fermion masses

- Short range electron-electron interactions: Hubbard U, V_1 , V_2
- Order parameter Δ

$$\epsilon_{\pm}(\mathbf{p}) = \pm \sqrt{|p|^2 + |\Delta|^2}$$

Chiral symmetry breaking orders

CSB orders – break sublattice symmetry

$$H_{CSB} = \sigma_0 \otimes H_0 + m_j (\sigma_j \otimes \gamma_0), \qquad \gamma_0 = \tau_0 \otimes s_3$$

Antiferromagnetism (j = 1, 2, 3): Hubbard repulsion U [I. Herbut, PRL 2006, Assaad and Herbut, PRX 2013] Charge density wave (j = 0): Nearest-neighbour repulsion V_1 [Herbut, PRL 2006; Herbut *et al*, PRB 2009; Weeks and Franz, PRB 2010]

Charge density wave

Antiferromagnetism

Topological orders

Broken time reversal symmetry

 $H_{TRSB} = \sigma_0 \otimes H_0 + \tilde{m}_j (\sigma_j \otimes i\gamma_1\gamma_2)$

Quantum Anomalous Hall (j = 0)/ Spin Hall (j = 1, 2, 3) Insulators:

Next nearest-neighbour interactions V_2

[Raghu et al., PRL 2008; Roy and Herbut, PRB 2013]

• In graphene: $U_{crit} > U > V_1 > V_2$ [Wehling *et al.*, PRL 106, 236805 (2011)]

– Interactions not strong enough to generate CSB orders when B = 0

• Magnetic fields can help CSB ordering at weak coupling

Magnetic Catalysis

- \bullet Magnetic fields quench kinetic energy \Longrightarrow enhances interactions
- Formation of CSB orders at infinitesimal interaction in a magnetic field

Degeneracy $D = B/2\pi$

- Zeroth LL simultaneously sublattice/valley polarized
- Weak U, V₁ ⇒ AFM, CDW
 [I. Herbut, PRB 2007]
- Magnetic catalysis: magnetic field allows formation of CSB orders for subcritical zero field coupling
 [V. P. Gusynin *et al.*, PRL 73, 3499 (1994)]
 − Splits ZLL, pushes down all filled LLs ⇒ ν = 0 state

Filled LL with CSB order:

$$E_n = -\sqrt{2nB + \Delta_{CSB}^2}$$

Other proposals

• Quantum Hall Ferromagnetism

• QHFM: breaks valley degeneracy (sublattice symmetry not broken) [Barlas et al., Nanotechnology (2012)]

 $\sigma_0(\mathrm{spin})\otimes \tau_3(\mathrm{valley})\otimes \mathrm{s}_0(\mathrm{sublattice})$

• Splits all filled Landau levels:

$$E = -\sqrt{2nB} \pm \Delta_{QHFM}$$

- Gains energy only by splitting ZLL c.f. CSB masses all LLs contribute
- Long range Coulomb interaction

Gap $\sim \sqrt{B}$: does not capture crossover in gap dependence on B_{\perp}

Self-consistent theory of $\nu = 0$ Hall state

- On-site repulsion \implies antiferromagnetism (CSB Dirac mass)
- Magnetic field: Zeeman coupling $(\lambda) \Longrightarrow$ ferromagnetism

Dirac LLs $\pm E_{n,\sigma}$:

$$E_{n\sigma} = \sqrt{N_{\perp}^2 + \left[\sqrt{N_3^2 + 2nB} + \sigma(m+\lambda)\right]^2}$$

Non-zero $\lambda \Longrightarrow N_3 = 0$: Easy-plane antiferromagnet AFM order $\perp B$, FM order $\parallel B$ [I. Herbut, PRB 76, 085432 (2007)]

• Free energy: in-plane antiferromagnetism (N_{\perp}) and ferromagnetism (m)

$$F_0 = \frac{N_{\perp}^2}{4g_a} + \frac{m^2}{4g_f} - D\sum_{\sigma=\pm} \left[\frac{1}{2}E_{0,\sigma} + \sum_{n\geq 1}^{N_{\text{max}}}E_{n,\sigma}\right]$$

Gap equations

Minimize F_0 with respect to N_{\perp} and m:

$$\frac{1}{g_a} = \frac{B}{\pi} \sum_{\sigma=\pm} \left[\frac{1}{2E_{0,\sigma}} + \sum_{n\geq 1}^{N_{\text{max}}} \frac{1}{E_{n,\sigma}} \right],$$

Displays UV divergence as $N_{\rm max} \rightarrow \infty$ (filled LLs pushed down)

$$\frac{1}{g_f} = \frac{B}{\pi} \sum_{\sigma=\pm} \left[\frac{(m+\lambda)}{2E_{0,\sigma}} + \sum_{n\geq 1}^{N_{\max}} \frac{(m+\lambda) + \sigma\sqrt{2nB}}{E_{n,\sigma}} \right]$$

No UV divergence (filled LLs are split)

• Regularization:
$$\delta_a = \pi \left[\frac{1}{g_a \Lambda} - \frac{1}{g_a^c \Lambda} \right]$$
 with $(g_a^c)^{-1} = \int_{\Lambda^{-1}}^{\infty} ds / s^{\frac{3}{2}}$

 δ_a measures distance from zero field AFM quantum critical point g_a^c $\delta_a > 0$: subcritical interaction

Comparison with experiments at $\nu = 0$

- Two parameter fits to gap for easy plane antiferromagnetic (N_{\perp}) order. Ferromagnetism $m \ll N_{\perp}$.
- Single parameter fits (with $\delta_f = 0$, m = 0) are equally good keep m for consistency

$\nu = 0$ Hall state in tilted magnetic fields

- N_{\perp} and m scale with B_{\perp} (Dirac LL driven orderings)
- Zeeman coupling λ scales with total magnetic field B_T not B_{\perp}

Ferromagnetic order, m, and gap Δ for $0 \leq B_{\parallel} \leq 50$ T at fixed B_{\perp}

m grows linearly with B_{\parallel} for $B_{\parallel}\gtrsim 2~{
m T}$

QHE at $\nu = \pm 1$

• Chemical potential close to first excited state

- Simultaneous lifting of sublattice and staggered spin degeneracy
- Lifting of sublattice degeneracy \implies charge density wave (CDW) \implies charge gap $\Delta_1^C = C$ (scales with B_{\perp})
- Lifting of staggered spin degeneracy \implies easy axis AFM (N_3) \implies spin gap $\Delta_1^S \propto (\lambda + m)$
- Coexistence of two chiral symmetry breaking orders
- $C \sim V_1$ (nearest-neighbour repulsion), hence $C \gg m + \lambda$, and $\Delta_1^C \gg \Delta_1^S$ - gap in $\nu = \pm 1$ state primarily from C (CDW)

Comparison with experiments for $\nu = 1$

- Self-consistent calculation of CDW gap similar to AFM gap for $\nu = 0$
- Long-range Coulomb interactions renormalize Fermi velocity

$$v_F = v_F^0 \left[1 + \frac{e^2}{8\epsilon v_F} \ln\left(\frac{B^*}{B}\right) \right]$$

where v_F^0 is the bare Fermi velocity, $B^* \sim 8 \text{ T}$

[Theory: Herbut and Roy, PRB (2008); Experiment: Faugeras *et al.*, PRL (2015)] \implies renormalizes $\nu = 1$ gap (in units of $v_F \Lambda$)

Summary

- Scenario for formation of gaps for $\nu = 0$: formation of CSB Dirac masses via magnetic catalysis
 - Microscopic origin: weak short range interactions
 - Candidate orders: Antiferromagnetism, CDW
- Observed scaling behaviour of the gap for $\nu = 0$ with magnetic field including both linear and sublinear ($\sim \sqrt{B}$) regimes can be explained with easy plane antiferromagnetism coexisting with weak easy-axis ferromagnetism
- The scaling of the gaps in the $\nu = 1$ state can be explained within the same framework: dominant CDW with weak easy axis antiferromagnetism
- A similar mechanism can be applied to other graphene-based layered systems, e.g. bilayer and trilayer graphene [B. Roy, PRB 2014], Weyl semimetals [B. Roy, arXiv:1406.4501]
- Implications for Fractional Quantum Hall states?

B. Roy, M. K., and S. Das Sarma, Phys. Rev. B 90, 201409(R) (2014).

$\nu = 1$ Hall state in a tilted magnetic field

 Excitation gap (charge and spin contributions)

$$\Delta_1 \simeq \Delta_1^C + \Delta_1^S,$$

- Charge gap $\Delta_1^C = C$ (scales as B_\perp)
- Spin gap $\Delta_1^S = 2(m + \lambda)N_3/\Delta_0$ - N_3 , Δ_0 scale as B_\perp - $(m + \lambda)$ scales as B_T
- Experimentally, gap scales with B_T but with larger slope than for single particle Zeeman coupling (λ): presence of a spin gap provides an explanation for the enhanced slope

Young, et al., Nat. Phys. (2012).