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Natural focusing: caustics
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Pictures from: Natural Focusing and the Fine Structure of Light by J.F. Nye
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Structurally stable catastrophes with K<3
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Structurally stable caustics and their generating functions with
K=4

name codimension K d(s;C) [generating function]
Fold I $3/3+Cs
Cusp 2 54/4+C55%/2+Cys
Swallowtail 3 $5/54+C383/3+C,82/2+C3s
Elliptic umbilic 5 513-351522- C3(512+522)-C252-C151
Hyperbolic umbilic S 513+523- C35152-C252-C151
Butterfly 4 50/6-+Cas4/4+C353/3+C2s%/2+Cs
Parabolic umbilic 4 514+51522+C 4822+ C3512+C282+C151

R. Thom Structural Stability and Morphogenesis (Benjamin, 1975); V.I. Arnol’d, Russ. Math. Survs. 30 (5) (1975) p.1
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Mathematically, catastrophe theory describes
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How 1t works

Example of the cusp: ¢(s;C) = 34/4 + 0232/2 + (18

9,
Ray equation (Fermat’s principle) : _qb — 57 +Cos+C1 =0
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Caustic equation : — 352 £C5 =0
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Wave theory: Feynman path integral

Richard Feynman
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T'he Pearcey function

Cusp(Cly 02 z(34/4+0252/2+01 S)ds

el

T. Pearcey, Phil. Mag. 37, 311 (1946)

There are three rays inside the cusp and one outside



Dynamics of N particles on aring
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Particle density as a function of time. Initial
density on ring at t=0 is uniform.
Interaction is repulsive.




Catastrophes in superfluids

1. Bosonic Josephson junction (two tunnel-coupled Einstein condensates)

Double well trap

w N1, = # of atoms in left well
Npr = # of atoms in right well

o — S

2. Rotation of a Bose-Einstein condensate around a ring

Tunnelling region

BEC N. = # of clockwise rotating atoms

N, = # of anticlockwise rotating atoms




(Quantum field theory description

1

: e e U=t
Bose-Hubbard model: H — —.J a; a; —= 5 a,a,;a;a;
(4,57 /

Reduce to two sites:

A U
e — —J(&}L&r +ala;) + Z(&Zr&l — ala,)% 4 constant terms

In Josephson junction language:

A Ey
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N

(@l a, + alag)



Classical field theory (mean-field theory)
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where: n = —

2(nz—nr) > O —0 0

penduh:lm
population difference phase difference

Mean-field theory is equivalent to Maxwell’s theory for light...



Classical-field cusps in the dynamics of a bosonic Josephson
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Note that in quantum mechanics:
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Josephson’s equations [mean-field theory] :




(Quantum field dynamics
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Fine structure: vortex-antivortex pairs

amplitude




Fine structure in the quantum cusp: vortices in Fock space
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Dynamics near a quantum phase transition
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Summary

Catastrophes are universal objects in classical and quantum in the dynamics.

They fall into equivalence classes.

The wave function and it scaling properties in the immediate vicinity of a catastrophe
are given by one of the Thom-Arnold generating functions.

Catastrophes have three levels of structure (geometric, interference fringes,vortices)
Quantum catastrophes live in Fock space and are naturally discretized; they also
contain discretized vortices.

Dynamics near phase transitions can generate catastrophes.
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1. The big question

2. Gallery of catastrophes in nature

3. Catastrophes in quantum fluids

4. Fine structure of a quantum catastrophe



T'he big queston

When do we need to second-quantize
waves in order to avoid singularities?

M.V. Berry, Nonlinearity 21, T19 (2008),
“Three quantum obsessions”




When do we need to 1st quantize?

Ray ABCDE gives the primary bow

Ray FGHIKE gives the secondary bow

René Descartes’ geometrical ray theory of the
rainbow, Discourse on Method (1637)



The rainbow as a caustic

FI"ON > sun

------------------------------

Single ray in a raindrop

Caustic = envelope of a family of rays

In ray theory the light intensity diverges
on a caustic: “a lot goes into a little”

Caustics are the singularities of ray theory,
i.e. places where it fails

real caustic
virtual caustic

/ real Many rays in
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T'aming the singularity: wave theory (1st quantization)

Supernumerary arcs = Airy fringes made by white light

Intensity pattern for one colour, e.g. yellow, as a function of angle
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G.B. Airy, On the intensity of light in the neighbourhood of a caustic, Trans. Camb. Phil. Soc. 6, 379 (1838)



T'winkling of starlight

R phase screen




(Quantum catastrophe: Hawking radiation

A laboratory analogue of the
event horizon using slow light
in an atomic medium

Ulf Leonhardt

School of Physics and Astronomy, University of St Andrews, Nerth Haugh,
St Andrews, Fife KY16 9SS, UK

Singularities underlie many optical phenomena'. The rainbow, for
example, involves a particular type of singularity—a ray catas-
trophe—in which light rays become infinitely intense. In practice,
the wave nature of light resolves these infinities, producing
interference patterns. At the event horizon of a black hole?, time
stands still and waves oscillate with infinitely small wavelengths.
However, the quantum nature of light results in evasion of the
catastrophe and the emission of Hawking radiation’. Here I report
a theoretical laboratory analogue of an event horizon: a parabolic
profile of the group velocity’ of light brought to a standstill in an
atomic medium®'® can cause a wave singularity similar to that

associated with black holes. In turn, the quantum vacuum is Waves appr‘oaching an event horizon suffer
forced to create photon pairs with a characteristic spectrum, a e : 2 S ey
phenomenon related to Hawking radiation’. The idea may initiate d Ioga rithmic P hase si ngu la rity: A (r'rEh)

a theory of ‘quantum’ catastrophes, extending classical catastro-
phe theory™’.



Rogue waves

week ending

PRL 104, 093901 (2010) PHYSICAL REVIEW LETTERS 5 MARCH 2010

FIG. 1 (color online). Photograph of one of the two scattering
arrangements used. The platform has width 260 mm and length
360 mm. Each cone has diameter 25 mm and height 15 mm. The
probe antenna is fixed in a horizontally movable top plate located
20 mm above the bottom (not shown).

| — —

FIG. 2 (color online). Comparison of an experimental wave
pattern with a classical ray simulation. Left: A wave function at
frequency f = 30.95 GHz. Right: The corresponding semiclas-
sical simulation, with modes 1 through 4 added together.

S

Freak Waves in the Linear Regime: A Microwave Study

R. Hohmann,' U. Kuhl,' H.-J. Stéckmann,' L. Kaplan,? and E. J. Heller®
'Fachbereich Physik der Philipps-Universitit Marburg, D-35032 Marburg, Germany
’Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA
3 Department of Physics and Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, Massachusetts 02138, USA
(Received 4 September 2009; revised manuscript received 2 December 2009; published 1 March 2010)

Microwave transport experiments have been performed in a quasi-two-dimensional resonator with
randomly distributed conical scatterers. At high frequencies, the flow shows branching structures similar
to those observed in stationary imaging of electron flow. Semiclassical simulations confirm that caustics in
the ray dynamics are responsible for these structures. At lower frequencies, large deviations from
Rayleigh’s law for the wave height distribution are observed, which can only partially be described by
existing multiple-scattering theories. In particular, there are “‘hot spots™ with intensities far beyond those
expected in a random wave field. The results are analogous to flow patterns observed in the ocean in the
presence of spatially varying currents or depth variations in the sea floor, where branches and hot spots
lead to an enhanced frequency of freak or rogue wave formation.

Intensity I

FIG. 3 (color online). Probability distribution of intensities.
The dark (black) histogram includes all data, while the light
(yellow) histogram excludes frequencies associated with the hot
spots. The dotted line is the Rayleigh distribution, while the
dashed (blue) line is a best fit using the theoretical distribution
given by Eq. (2) (y = 23.5).

FIG. 4 (color online). A “‘hot spot,” observed at a frequency of
8.85 GHz. The experimental probability density for observing
such a hot spot is 1 to 2 orders of magnitude larger than that
expected from multiple-scattering theory.




Caustics 1in atom diffractuon
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Wave theory removes geometric singularity




T'he Airy function as a path integral
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Universal quantum dynamics! Catastrophes in Fock space
following the sudden coupling of two independent BECs

D. O’D., Phys. Rev. Lett. 109, 150406 (2012)
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Poisson resummation of wave functon
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(austics emerge as N—
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Scaling exponents

Catastrophe
Fold
Cusp
Swallowtail
Elliptic umbilic
Hyperbolic umbilic
Butterfly

Parabolic umbilic

Arnold Index 3
1/6
1/4
3/10
13
18
3
3/8

WGk = (1

Berry Indices o;
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Airy function in critical Anderson mode

week ending

PHYSICAL REVIEW LETTERS 27 AUGUST 2010

S

Critical State of the Anderson Transition: Between a Metal and an Insulator

PRL 105, 090601 (2010)

Gabriel Lemarié,"* Hans Lignier,”" Dominique Delande,' Pascal Szriftgiser,” and Jean Claude Garreau®

UL aboratoire Kastler Brossel, UPMC-Paris 6, ENS, CNRS; 4 Place Jussieu, F-75005 Paris, France
2Laboratoire de Physique des Lasers, Atomes et Molécules, Université Lille 1 Sciences et Technologies, UMR CNRS 8523;
F-59655 Villeneuve d’Ascq Cedex, France*

(Received 7 May 2010; revised manuscript received 25 June 2010; published 23 August 2010)
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Using this critical behavior, we can compute the AIGF
for the quasiperiodic kicked rotor [24]. The details of the
calculation will be published elsewhere; we obtain:

(p, 1) = 3Bp¥ ) BAIBp* ) Blpl],  (6)

where p is a parameter directly related to the critical
quantity A, = lim,_,o(p?)/?? (see [2,5]) via p =
I'(2/3)A./3, where I' is the Gamma function and Ai(x)
is the Airy function. The asymptotic form Eq. (3) comes
simply from the limiting behavior of the Airy function for
large x and is found perfectly intermediate between the
exponential (localized) and the Gaussian (diffusive)
shapes.



