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Outline

The MCAS formulation, brief reviews: K. Amos, et al,
Nuclear Physics, A728 (2003) 65; A912 (2013) 7

Mirror nuclei method

Application of MCAS method to 0,
using the vibrational model

Final results for Nucleon + 100
Nucleon + mass-18 preliminary results

a-particle scattering from even-mass nuclei
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MCAS:

Multichannel Algebraic Scattering Formalism

1. Discretization of the coupled-channel
equations by separable expansion of
the channel interactions.

2. Pauli principle inclusion by use of
orthogonalizing pseudo-potentials.

3. Fast, effective search procedure for
resonances and bound states.

4. Can use rotational or vibrational models
for the structure of the target nucleus.
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Why mirror nuclel

Two nuclei are called “mirror nuclei” if one changes into the
other by interchanging all protons and neutrons

Example: #C, the isotope of carbon used in carbon dating
(half-life = 5700 years) has as its mirror “O, a short-lived
isotope of oxygen (half life = 70.6 sec)

Nuclei with a proton excess tend to be less stable than those
with a neutron excess

Current MCAS role: analyze bound and resonant spectra to
support and interpret experimental work




Nucleon — %O scattering

The mirror concept cannot be used to get information on 60,
since it is its own mirror.

However, energy levels of %0, as well as those of 70O,
the compound system of n+'0O, are well known.

So, we carry out MCAS calculations on n+'°0 scattering, to get
accurate fits to the spectrum, including resonant states, of '7O.
From these we extract neutron scattering “data”.

Using the same parameters, but adding a Coulomb force, we
obtain a spectrum for '7F, as well as proton scattering cross
sections. '’F is the mirror system to '7O.




Difficulties with MCAS for 1°O

® 160 is a doubly-magic nucleus: 8 protons in the Os;,,, Ops,,
and Op,,, states: filled s and p shells.

® That means 10 is spherical in its ground state, which causes
difficulties for us, since we need the assumption of a
deformed target nucleus to which the incoming neutron or
proton is coupled. The rotational model does not work well
with a spherical ground state.

® So, instead, we use the vibrational model, for the first time
with MCAS. Now the deformation is dynamic, and coupling to
the projectile works better.

® Results shown here are obtained with the vibrational model.
This is a more complicated model, and obtaining good results
has required much work. -
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The parameters
—m

- 47.15 - 50.6 3.15 fm 2.608 fm
vLL 255 0.0 2 0.65fm  0.513 fm
V.. 6.9 7.2 B, 021  w=0.051
V., 2.5 2.0 B, 0.42
™ E, (MeV) 0s,,, Ops,2 Op1,» Ods,»
0+, 0.0 106 106 109 0.0
O+, 6.049 106 106 0.0 0.0
3 6.13 106 106 5.0 0.0
2+ 6.92 106 106 0.0 0.0
1~ 7.12 106 106 5.0 1.0
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Spectra of 7O and "F
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The 10 \owest-E states

-“ = “ —

(5/2)+ -4.1436 _4.1432 _0.6005 _0.8079

(1/2+ -3.2729  — _3.4426 _ _0.1052 —  -0.3927 _
(1/2- -1.0882  — _0.7781 _ 25035 19  2.8874 5.58(10)-5
(5/2- -0.3008  — _0.4732 _ 3.2565 1.5  2.5644 9.80(10)-6

(3/72)-  0.4102 40 0.42264 1.277 4.0395 225 3.2104 0.00552

(3/2)+  0.9412 96 0.9534 129 4.3995 1.530 3.9557 0.906
(9/2)- 1.0722 <0.1  2.1528 1.08(10)7 4.6195 - 5.3930 1.26(10)°
(3/2-  1.2356 28 27332 02923  4.8875 68 5.826  6.8(10)5

(7/2)- 1.5537 3.4 1.2185 0.1615 5.0715 40 4.3679  1.95(10)3

(5/2)- 1.5892 <1 3.1504 0.1982 5.0815 <0.6 6.3027 6.8(10)4
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n+160 total scattering cross section

3/2° 3/2°
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Significance of the mass 17-19 systems

The structures of 7O and ""F are critical in the synthesis of elements,
beyond carbon, within the stellar environment. The CNO cycle:

CN: 2C+p— “N+4q
BN o BC+et +v

BC 4 p— UN+~y

HUN 4 p— 150 4 4
150 5 BN 4et +u

PN+p— 2C+a
®N+p— 044 YF+p— 0 +a




Mass 18 and 19
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Results for a scattering from even-even nuclei.

Here it is assumed an a particle scattering from the
unstable 8Be nucleus fuses to form 12C.
The levels shown are the lowest levels in 12C.
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Alpha + 12C - 100
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Alpha + 160 > 20Ne
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... and beyond: mass 22-23
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Figure 2. Experimental and MCAS * Al spectrum.
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Concluding remarks

Work on neutron-'°Oxygen scattering is near
completion and results are in good agreement
with experimental data.

Proton-1°Oxygen scattering calculations are also
well advanced, and a spectrum of 'F was shown.

Current work involves the mass 18-19 system,
and alpha-nucleus scattering.

Work on mass-20 and beyond has commenced;
oreliminary results are promising.
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