Constraining Oscillation Analysis Inputs at the T2K Near Detector

Christine Nielsen
University of British Columbia
For the T2K Collaboration
CAP Congress 2015

The T2K Experiment

- Near detector at 280m from production target.
- Water Cherenkov detector at Super Kamiokande, 295km from source
- Targets at Near Detector are the Fine Grained Detectors (FGDs)
 - FGD 1: Scintillator Modules
 - FGD 2: Water and Scintillator Modules

Oscillation Fit Inputs

External Inputs

- NA61/SHINE
 - Hadron production measurements at CERN
 - Tune pion and kaon production
- T2K proton beam measurements
- Cross section inputs from MiniBooNe and MINERvA

T2K Run1-4 Flux at Super-K

^{**} J. A. Formaggio and G. P. Zeller, "From eV to EeV: Neutrino cross sections across energy scales", Reviews of Modern Physics, Vol. 84 (3), 1307 (2012)

Oscillation Fit Inputs

ND280 Event Selections

- Selections use FGD 1 as target
- Selected samples are defined by topology:
 - CC0Pi, CC1Pi and CC Other
 - Samples are binned in muon momentum and angle.

ND280 Event Selections

CC0Pi
$$\nu_{\mu} + n \rightarrow \mu + p$$

CC1Pi
$$\nu_{\mu} + N \rightarrow \mu + \Delta \rightarrow \mu + \pi + N'$$

CCNPi
$$\nu_{\mu} + N \rightarrow \mu + N' + n\pi$$

ND280 Fit

The ND280 + Beam Fit is a maximum likelihood fit that uses priors from beam flux and external cross section measurements:

$$L(\text{flux, xsec}) = L_{ND280}(\text{flux, xsec}) \times L_{ext}(\text{flux}) \times L_{ext}(\text{xsec})$$

ND280 Fit Outputs

- Large improvement in crosssection parameter constraints and flux prediction.
- ND280 constrains the product of flux times cross section, which results in anticorrelations that reduce uncertainty in SK rate prediction.

Parameter Correlation Matrix After ND280 Constraint

T2K systematic uncertainty

		$ u_{\mu}$ sample	$v_{\rm e}$ sample
ν flux and cross section	w/o ND measurement	21.8%	26.0%
	w/ ND measurement	2.7%	3.1%
v cross section due to difference of nuclear target btw. near and far		5.0%	4.7%
Final or Secondary Hadronic Interaction		3.0%	2.4%
Super-K detector		4.0%	2.7%
total	w/o ND measurement	23.5%	26.8%
	w/ ND measurement	7.7%	6.8%

Fractional error on number-of-event prediction

Due to difference in target material, not all parameters fit at ND280 can be passed on to SK.

Future Improvements

- Current fits have only used FGD 1 as a target mass. The next step is adding FGD 2 to include an Oxygen target.
 - FGD 2 has both scintillator layers and water layers.
 - Events in FGD 2 are divided into similar topological samples as FGD 1
 - CC0Pi, CC1Pi, CC Other
 - By using both FGD 1 and FGD 2 samples, we can effectively make a subtraction measurement for the water target.

Future Improv. (cont.)

- Initial studies show improvement in constraints on oxygen cross section parameters
 - Plot show is a comparison of fits to MC using FGD 1 and using FGD 1 + FGD 2.
- Predicted event rate width at SK may also see an improvement over previous fits.

Summary

- Oscillation fits take flux and external cross section measurements as input.
- By fitting these with ND280 data, we can improve the constraints on our parameters and pass this on for reweighting the T2K MC.
- Future plans are to include a water target mass selection in the ND280 fit.
 - Will improve constraints on Oxygen cross section parameters