

Superallowed Fermi Beta Decay Studies at TRIUMF-ISAC

C.E. Svensson, University of Guelph

CAP Congress, Sudbury, Ontario June 16 – 20, 2014

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The CKM matrix plays a central role in the Standard Model
 and underpins all quark flavour-changing interactions:
 weak interaction eigenstates ≠ quark mass eigenstates

$\left d' \right\rangle = V_{u}$	$_{d}\left d\right\rangle +V_{us}$	$ s\rangle + V_{ub} b\rangle$
-----------------------------------	------------------------------------	-------------------------------

In the Standard Model the CKM describes a unitary transformation.

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

The first row of the CKM matrix provides, by far, the most demanding experimental test of this unitarity condition.

CKM Unitarity

J.C. Hardy and I.S. Towner, Ann. Phys. (Berlin) 525, 443 (2013).

New Lattice QCD Form Factor Calculations for V_{us}

R.J. Dowdall et al., Phys. Rev. D 88, 074504 (2013) $K^+ \rightarrow l\nu / \pi^+ \rightarrow l\nu$ (HPQCD Collaboration)

$$|\mathbf{V}_{us}| = 0.22564(53)$$

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1.00009(43)_{Vud}(24)_{Vus}$

A. Bazavov et al., Phys. Rev. Lett. 112, 112001 (2014) $K^+ \rightarrow \pi^+ l\nu$ (Fermilab Lattice and MILC Collaborations)

 $|V_{us}| = 0.22290(90)$

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99885(43)_{Vud}(40)_{Vus}$

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

 $|M_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2$ (for T=1)

Strategy: Measure superallowed ft-values, deduce G_V and V_{ud} :

Vector coupling $\rightarrow G_V^2 = \frac{K}{2 \text{ ft}}$ $|V_{ud}| = G_V / G_F \leftarrow \frac{\text{Fermi coupling}}{\text{constant}}$

Superallowed *ft*-values

Z of Daughter

 $\Delta_{\rm R}^{\rm v}$ = nucleus independent inner radiative correction: 2.361(38)%

 δ'_R = nucleus dependent radiative correction to order Z² α^3 : ~1.4% - depends on electron's energy and Z of nucleus

 $\delta_{\rm NS}$ = nuclear structure dependent radiative correction: -0.3% – 0.03%

 $\delta_{\rm C}$ = nucleus dependent isospin-symmetry-breaking correction: 0.2% – 1.5% - strong nuclear structure dependence

Corrected Superallowed *Ft* Values

P. Finlay, et al., Phys. Rev. Lett. 106, 032501 (2011)
R. Dunlop, et al., Phys. Rev. C 88, 045501 (2013)

Theoretical Treatment of δ_{C}

Many recent approaches to ISB corrections

- → Nuclear Shell Model
- → Relativistic Hartree-Fock
- → Random Phase Approximation
- → Energy Density Functional

Difference between Woods-Saxon and Hartree-Fock Radial Overlap Corrections

TRIUMF-ISAC

Up to 100 µA, 500 MeV proton beams from the TRIUMF main cyclotron produce high-intensity secondary beams of many of the superallowed emitters by the ISOL technique.

Superallowed Fermi β Decay Studies at ISAC Halflives (GPS) Branching ratios (8π) Masses (TITAN)

Charge Radii (laser spectroscopy)

Near Future (GRIFFIN)

¹⁴O Half-Life Measurement

Simultaneous independent direct β and γ -ray counting experiments using the 8π spectrometer and the Zero-Degree Scintillator.

γ Counting:

-Decay Selective -Slow & Inefficient

β Counting:
 -Fast & Efficient
 -Not Decay
 Selective

Previous measurements reveal a systematic discrepancy between detection method

¹⁴O Half-Life vs Detection Method

¹⁴O Half-Life Measurement at ISAC

¹⁴O Half-Life

- Initial experiment shows consistency between β and γ half-life measurements for ¹⁴O.
- A follow-up experiment is scheduled for July, 2014 to push to 0.01% precision.
- *ft* measurements for light superallowed Fermi β emitters are required to constrain scalar currents in the weak interaction.

A.T. Laffoley et al., Phys. Rev. C 88, 015501 (2013)

Ŋ8

4π Gas Counter and Thick Tape Transport

- * 4π continuous-flow gas-proportional counter and tape transport system
- ♦ Methane (CH₄) gas
- ~ ~ 100% efficient β counter
- Very low background rates

E. F. Zganjar

¹⁸Ne Sample Data – Gas Counter

Status of ¹⁸Ne Half-life

⁷⁴Rb Superallowed Decay ($T_{1/2} \sim 65 \text{ ms}$)

Halflife: Measured with the GPS 4π gas proportional counter at ISAC. $T_{1/2} = 64.761(31)$ ms

G.C. Ball et al., Phys. Rev. Lett. 86, 1454 (2001).

Mass: First demonstration of a high charge state mass measurement for a short-lived isotope with the TITAN Penning trap.

S. Ettenauer et al., Phys. Rev. Lett. 107, 272501 (2011).

Charge Radius: Measured via collinear laser spectroscopy:

 $< r_{ch}^2 > 1/2 = 4.19(1) \text{ fm}$

Reduces uncertainty in theoretical δ_{C2} by ~ 20%

E. Mané et al., Phys. Rev. Lett. 107, 212502 (2011).

Branching Ratio: Measured with the 8π Spectrometer to $\pm 0.03\%$

BR = 99.545 (31) %

R. Dunlop et al., Phys. Rev. C 88, 045501 (2013).

Superallowed β Branching Ratios for $A \ge 62$ and the Pandemonium Effect

VOLUME 88, NUMBER 25 PHYSICAL REVIEW LETTERS 24 JUNE 2002 10418 ⁷⁴Rb Superallowed Beta Decay of Nuclei with $A \ge 62$: The Limiting Effect of Weak Gamow-Teller Branches J.C. Hardy and I.S. Towner* >400 1⁺ states Cyclotron Institute, Texas A & M University, College Station, Texas 77843 $\Sigma BR = 0.9\%$ (Received 16 January 2002; published 6 June 2002) The most precise value of V_{ud} , which is obtained from superallowed nuclear β decay, leads to a viola-99.1% tion of Cabibbo-Kobayashi-Maskawa unitarity by 2.2σ . Experiments are underway on two continents to 1741 (2^{+}) test and improve this result through decay studies of odd-odd N = Z nuclei with $A \ge 62$. We show, in a series of illustrative shell-model calculations, that numerous weak Gamow-Teller branches are expected (2^{+}) 1203 to compete with the superallowed branch in each of these nuclei. Though the total Gamow-Teller strength 508 0+ is significant, many of the individual branches will be unobservably weak. Thus, new techniques must be developed if reliable ft values are to be obtained with 0.1% precision for the superallowed branches. 456 2+ 01 DOI: 10.1103/PhysRevLett.88.252501 ⁷⁴Kr PACS numbers: 23.40.Hc, 21.60.Cs, 27.50.+e

For large Q-value β decays, there are generally many weak β branches to the large number of daughter states within the Q-value window.

In the subsequent γ decay, many individual γ -rays may be too weak to identify.

The sum of these unobserved γ intensities will, however, generally be sufficient to prevent precision determination of β decay branching ratios through γ -ray spectroscopy.

8π Spectrometer – Decay Spectroscopy at ISAC-I

8π Spectrometer at ISAC

20 Compton-Suppressed HPGe detectors and 10 BaF2 detectors for γ-ray detection

20 plastic scintillators for $\boldsymbol{\beta}$ detection

 $5~Si({\rm Li})$ detectors for conversion electron spectroscopy

Fast, in-vacuum tape transport system

Simultaneous collection of γ -singles, $\gamma\gamma$ coincidences, β tagging, conversion electrons, and lifetime measurements

Counting ⁷⁴Rb β Decays with SCEPTAR

Identifying γ-rays from ⁷⁴Rb Decay

Raw γ-spectrum contains lines from room background and in-beam contaminants

> β-γ coincidence, Bremsstralung suppression reduce background

Spectrum during beam-off allows one to identify long-lived contaminants

γ-γ Coincidences following ppm β-decay branches of ⁷⁴Rb

All $\beta - \gamma$ Coincidences —

Internal Conversion Decay of the 0⁺₂ State of ⁷⁴Kr

57 γ-ray transitions identified following ⁷⁴Rb decay

Ground-state γ -feeding of I_{gs} = 3950(70) ppm identified.

Controlling Pandemonium via 2⁺ "Collector" States

 $I_{gs} = 3950(70) \text{ ppm}$ Direct β feeding of 2⁺ states is negligible $I'_{2+} = 1225(57) \text{ ppm}$ $B_{gs} = I'_{gs} / (I'_{gs} + I'_{2+})$ Expt + Shell Model: $B_{gs} = 0.33(11)$ $I'_{gs} = 600(300) \text{ ppm}$

Superallowed Branching Ratio: 99.545 ± 0.031 %

R. Dunlop PRC 88, 045501 (2013)

⁷⁴Rb Superallowed Decay

⁷⁴Rb Superallowed Error Budget

The Future ...

Gamma

Ray Infrastructure For Fundamental Investigations of Nuclei

A new high-efficiency decay spectroscopy facility for ISAC-I

GRIFFIN *(a)* **ISAC-I**

GRIFFIN

16 large-volume clover-type HPGe γ-ray detector

17 times the efficiency of the 8π at $E_{\gamma} = 1$ MeV

Efficiency improvement increases with γ-ray energy

~300x the γ - γ efficiency of the 8π

⁷⁴Rb Superallowed Decay with GRIFFIN

Angular Correlation Measurements with GRIFIFN (S1518: ⁶²Ga superallowed decay)

World Superallowed Fermi ß Decay Data

CVC hypothesis confirmed to $\pm 0.013\%$

Set limits on maximally parity violating weak scalar currents:

$$C_{\rm s}/C_{\rm v} = 0.0011 \pm 0.0013$$

 V_{ud} determined from the superallowed data is, by far, the most precisely determined element of the CKM quark-mixing matrix:

$$|V_{ud}| = 0.97425 \pm 0.00022$$

and together with V_{us} (and V_{ub}) provides the most demanding experimental test of the unitarity of the CKM matrix:

 $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 = 1.00008 \pm 0.00056$

Model-dependence of the strongly nuclear structure dependent isospin symmetry breaking corrections in superallowed Fermi β decays remains a key focus of research for both the theoretical and experimental communities.

V. Bildstein G. Deng A. Diaz Varela M. Dunlop R. Dunlop Z. Fairchild P. E. Garrett B. Hadinia D. S. Jamieson B. Jigmeddorj A.T. Laffoley A. Radich

E. T. Rand C. E. Svensson

H. Bouzomita G. F. Grinyer J. C. Thomas

- G. C. Ball
- P. C. Bender
- T. Bruhn
- A. B. Garnsworthy
- G. Hackman
- S. Ketelhut
- K. G. Leach
- B. Mills
- M. Moukaddam
- M. M. Rajabali
- E. Tardiff
- C. Unsworth

B. Blank J. Giovinazzo

E. F. Zganjar

C. Andreoiu D. S. Cross P. Voss K. Starosta

I.S. Towner

een's

J. R. Leslie

A

R. A. E. Austin

P. Finlay

