

FTBF Experiment T-1049 – May 7-22, 2014

Israel

- Weizmann Institute (G. Mikenberg, M. Shoa, V. Smakhtin)
- Tel Aviv University (Y. Benhammou, H. Cohen, M. Davies)
- Technion Israel Institute of Technology (N. Lupu, A. Vdovin)

Canada

- Carleton University (A. Bellerive, T. Koffas, J. Botte, S. Rettie, S. Weber, M. Batygov, P. Gravelle, M. Bowcock)
- McGill University (B. Vachon, B. Lefebvre, C. Bélanger-Champagne, A. Robichaud-Véronneau)
- Université de Montréal (L. Gauthier)
- Simon Fraser University (B. Stelzer, H. Torres, D. Mori)
- TRIUMF (O. Stelzer-Chilton, E. Perez Codina, S. Viel)
- Collaborators from Chile (Universidad Técnica Federico Santa Maria, Pontificia Universidad Católica de Chile) and China (Shandong University) could unfortunately not be present

small-strip Thin Gap Chamber prototypes

Experimental setup

Experimental setup

Experimental setup

- sTGC chambers filled with a mix of 55% CO₂ and 45% n-pentane
- Result: a highly-quenching mixture in which electrons drift at high velocities, making possible the use of the sTGC as trigger chambers

Gas system

Pixel detector hit map with beam

First beam run (including cosmic rays)

- The **support** structure can be seen
- Online data quality monitoring proves essential to detect synchronization problems, dead and noisy channels to avoid, and to tweak the chamber gain and threshold values

Channel number

sTGC readout synchronization

- This and next slides: Preliminary results for Module -1
 - Observed synchronization between layers read out:
 - More work is necessary to fully understand the synchronization patterns

2D: Coincidence rates for clusters and pads

With Respect to Layer

Example selected event from Module -1

sTGC cluster centre correlations, uncorrected

sTGC cluster centre corrections

- Rotate and zoom
 - Sine wave structure clearly visible
- **Fit**: $f(y_1) = a \sin(2\pi (b y_1 + d)) + c$
- Apply correction

sTGC cluster centre corrections

Reason for sine wave structure: cluster means are biased toward strip centres

sTGC cluster centre correlations, uncorrected

sTGC cluster centre correlations, corrected

sTGC cluster centre correlation projections

sTGC cluster centre correlation projections

- First indication of the sTGC resolution: $\sigma_{\text{L1-LX}}$ / $\sqrt{2}$
 - Layer 1 vs. Layer 2: 0.032 strip * 3.2 mm/strip / √2 ~ 70 μm
 - Layer 1 vs. Layer 3: 0.039 strip * 3.2 mm/strip / √2 ~ 90 μm
 - Layer 1 vs. Layer 4: 0.031 strip * 3.2 mm/strip / $\sqrt{2}$ ~ **70 µm**
- The sine wave corrections are also applied in the following slides

sTGC standalone tracks

sTGC inclusive residuals

sTGC standalone tracks (3 out of 4)

sTGC exclusive residuals

sTGC standalone resolution

Layer	L1S3	L2S3	L3S3	L4S3
Inclusive resolution	43 ± 1 μm	62 ± 1 μm	84 ± 1 µm	54 ± 1 μm
Exclusive resolution	139 ± 2 μm	88 ± 1 µm	119 ± 2 μm	175 ± 3 μm
Resolution	~ 80 µm	~ 70 µm	~ 100 µm	~ 100 µm

- The sTGC standalone resolution is given by $\sigma = \sqrt{\sigma_{\it inc}} imes \sigma_{\it exc}$
 - Uncertainties on the incl. and excl. resolution values are statistical only

Resolution calculation procedure reference:

DOI: 10.1016/j.nima.2004.08.132

sTGC angular resolution

Angular resolution:

$$\sigma_{\theta}$$
 = 2.8 mrad $\sigma_{y} \sim \sigma_{\theta}^{*}$ 34 mm \sim 100 μ m

 All three methods yield comparable results for the sTGC standalone resolution

Combined pixel and sTGC tracks

sTGC residuals wrt pixel track

Very preliminary: multiple-scattering effects and mis-alignment not corrected

Conclusion

- The ATLAS sTGC test beam at Fermilab is a success!
 - Thanks to all who participated, and to the FTBF for their hospitality
- Preliminary results for the Module -1 resolution: σ ~ 70-100 μm
 - Coming up: detailed analysis of all runs, including data with the 40x60 chamber
 - Will require corrections for mis-alignment and multiple-scattering effects (using a 3+3 pixel fit, or better)
 - Quantify resolution and deformations using data taken at different points in the Module -1
- Measured good detector efficiency
 - Small inefficiencies observed for pads, to be investigated

BONUS SLIDES

sTGC event selection

Ηţ

- Hit selection
 - Remove noisy channels
 - **Time Digital Output**

- Cluster selection
 - 3 to 5 hits per cluster
 - All cluster channels within 2 strips of mode
 - Channel mode of cluster not next to channel with

- Four out of four layers
- At most 2 clusters with only 3 channels

Event synchronization

