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Caesium Radioisotopes 
• Anthropogenic  

• Product of nuclear 
fission 

• Age dating from nuclear 
weapons testing 

• Identifying reactor 
products
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Why AMS?

• Cs 137 has a relatively short half life (30a) 

• Most has decayed since the late 50s  

• Cs 135 much longer (about 2 Ma)  

• The Ratios of Cs 135/137 quite useful



135Cs Half Life

• N. Sugarman (1949) 

• Xe-135 → Cs-135 + e- + νe 

• 1.85 → 2.3 Ma 

• Oak Ridge (1949) 

• 2.95 ± 0.3 Ma

β



Proposed Experiment

• Use liquid scintillation 
counting and accelerator 
mass spectrometry 

• LSC: Find Ao 

• AMS: find No
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Challenges
• Purity of Cs135 and yield tracers  

• Optimization of beam current 

• Isobaric interferences 

• Development of AMS Procedure 

• Cs memory
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Isotope Production

• Require sources of Cs 
with minimal amounts 
of isotope 
contamination 

• Xenon Decay 

• Neutron Capture



Creation of Cs135: 
135Xe Beta Decay

• 1 Bq of 135Cs requires the 
decay of 2 GBq of 135Xe 

• Chalk River Labs supplied a 
section of pipe that had Xe 
running through it.

Bq = Becquerel = Decay/Second 



LSC
• Mix aliquot of solution with scintillating agent and 

count the beta’s 
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• Small Cs137 peak. 

• Can’t use 137 for 
tracer 

• Use of surrogate beta 
emitter for efficiency
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Neutron Capture
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Creation of Cs134: 
Cs133 (n, 𝛾) Cs134
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Challenges
• Purity of Cs135 and yield tracers  

• Optimization of beam current 

• Isobaric interferences 

• Development of AMS Procedure 

• Cs memory
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• Choosing anion 

•           

• Homogenous mixing 

• Chemical vs Mechanical

Cs Current Optimization: 
The Study of Ion “Sourcery”
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Challenges
• Purity of Cs135 and yield tracers  

• Optimization of beam current 

• Isobaric interferences 

• Development of AMS Procedure 

• Cs memory
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Isobaric Interferences

• Barium 

• Masses 134→138 

• Zn Dimers 

• Masses 128→140
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Isobar Separator for Anions

16 Photograph and diagram provided by Chris Charles 



Isobar Separator for Anions

Photograph and diagram provided by Chris Charles 17



Ba Suppression 
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Zn Dimer Interference
• Noticed counts at mass 136 

and 138 

• No counts at 137 so not 
Barium 

• Measure mass 136 and 
increase stripper pressure
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Challenges
• Purity of Cs135 and yield tracers  

• Optimization of beam current 

• Isobaric interferences 

• Development of AMS Procedure 

• Cs memory
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Development of AMS 
Procedure

• Isotope scanning 

• Monitor isotopes during analysis 

• Yield Tracer 

• Ensure no fractionation



Masses Monitored During  
Analysis

• Require # of Cs134  atoms as yield tracer (134 amu) 
• Require # of Cs135 atoms as analyte (135 amu) 
• Ensure no Barium contamination (136 amu) 
• Check mass 137 for Barium/Caesium (137 amu)



Barium Natural Abundance



Challenges
• Purity of Cs135 and yield tracers  

• Optimization of beam current 

• Isobaric interferences 

• Development of AMS Procedure 

• Cs memory
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RadioCs Measurement
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Cs Memory
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Predicted vs Observed

Measured Half Life (Ma) Uncertainty (%)

Sugarmann (1949) 1.85 -

2.3 -

ORNL (1949) 2.95 10%
C. MacDonald (2014) 0.69 42%

0.63 45%
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In Summation

• Eliminated isobaric interferences 

• Demonstrated the effectiveness of ISA-AMS routine 

• Successfully measured rare Cs isotopes by AMS
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