The Measurement of Cs Isotopes by Accelerator Mass Spectrometry

Cole MacDonald

uOttawa

Caesium Radioisotopes

- Anthropogenic
- Product of nuclear fission
- Age dating from nuclear weapons testing
- Identifying reactor products

Thermal Neutron Fission of U-235

Why AMS?

- Cs 137 has a relatively short half life (30a)
- Most has decayed since the late 50s
- Cs 135 much longer (about 2 Ma)
- The Ratios of Cs 135/137 quite useful

135Cs Half Life

- N. Sugarman (1949)
 - Xe-135 $\xrightarrow{\beta}$ Cs-135 + e⁻ + \overline{V}_e
 - 1.85 → 2.3 Ma
- Oak Ridge (1949)
 - 2.95 ± 0.3 Ma

Proposed Experiment

- Use <u>liquid scintillation</u> <u>counting</u> and <u>accelerator</u> <u>mass spectrometry</u>
- LSC: Find A_o
- AMS: find N_o

Challenges

- Purity of Cs135 and yield tracers
- Optimization of beam current
- Isobaric interferences
- Development of AMS Procedure
- Cs memory

Isotope Production

- Require sources of Cs with minimal amounts of isotope contamination
- Xenon Decay
- Neutron Capture

Creation of Cs135: ¹³⁵Xe Beta Decay

Bq = Becquerel = Decay/Second

- 1 Bq of ¹³⁵Cs requires the decay of 2 GBq of ¹³⁵Xe
- Chalk River Labs supplied a section of pipe that had Xe running through it.

LSC

- $t_{1/2} = \frac{\ln 2}{A_o} N_o$
- Mix aliquot of solution with scintillating agent and count the beta's
- Small Cs¹³⁷ peak.
- Can't use 137 for tracer
- Use of surrogate beta emitter for efficiency

Neutron Capture

$$N_{A+1} = N_A \sigma_A \phi t$$

$$N_{A+2} = \frac{1}{2} N_A \sigma_A \sigma_{A+1} \phi^2 t^2$$

$$N_{A+3} = \frac{1}{6} N_A \sigma_A \sigma_{A+1} \sigma_{A+2} \phi^3 t^3$$

 $\bullet = \sigma$ $\Sigma \bullet = N$

Creation of Cs134: Cs133 (n, γ) Cs134

Challenges

- Purity of Cs135 and yield tracers
- Optimization of beam current
- Isobaric interferences
- Development of AMS Procedure
- Cs memory

Cs Current Optimization: The Study of Ion "Sourcery"

- Choosing anion
 - CsF_2^-
- Homogenous mixing
 - Chemical vs Mechanical

Challenges

- Purity of Cs135 and yield tracers
- Optimization of beam current
- Isobaric interferences
- Development of AMS Procedure
- Cs memory

Isobaric Interferences

- Barium
 - Masses 134→138
- Zn Dimers
 - Masses 128→140

Isobar Separator for Anions

Isobar Separator for Anions

Zn Dimer Interference

- Noticed counts at mass 136 and 138
- No counts at 137 so not Barium
- Measure mass 136 and increase stripper pressure

Challenges

- Purity of Cs135 and yield tracers
- Optimization of beam current
- Isobaric interferences
- Development of AMS Procedure
- Cs memory

Development of AMS Procedure

- Isotope scanning
 - Monitor isotopes during analysis
- Yield Tracer
 - Ensure no fractionation

Masses Monitored During Analysis

- Require # of Cs134 atoms as yield tracer (134 amu)
- Require # of Cs135 atoms as analyte (135 amu)
- Ensure no Barium contamination (136 amu)
- Check mass 137 for Barium/Caesium (137 amu)

Barium Natural Abundance

Challenges

- Purity of Cs135 and yield tracers
- Optimization of beam current
- Isobaric interferences
- Development of AMS Procedure
- Cs memory

RadioCs Measurement

Cs Memory

Predicted vs Observed

	Measured Half Life (Ma)	Uncertainty (%)
Sugarmann (1949)	1.85	_
	2.3	_
ORNL (1949)	2.95	10%
C. MacDonald (2014)	0.69	42%
	0.63	45%

In Summation

- Eliminated isobaric interferences
- Demonstrated the effectiveness of ISA-AMS routine
- Successfully measured rare Cs isotopes by AMS

Acknowledgments

Department of Physics, University of Ottawa

- C.R.J. Charles
- X.L. Zhao
- L. Kieser

Department of Earth Science, University of Ottawa

• J. Cornett

IsoTrace Laboratory, University of Toronto

• A.E. Litherland

Isobarex