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PURPOSE  

To derive the concrete mathematical form 
of dynamical equations for the period 
vectors of a periodic system under 
constant external stress, from Newton's 
Second Law.  
http://arxiv.org/pdf/cond-mat/0209372.pdf 
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Classical Molecular Dynamics (MD)  

widely used in many fields. 

Periodic boundary conditions are often 
employed, then the system becomes a 
dynamical crystal filled with repeating 
cells.  
 

3 



In this work, the whole system is modeled  
as a limited macroscopic bulk, composed of 
unlimited number of repeated microscopic cells 
in three dimensions, with surface effect ignored.  
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As usual, the cell in the center 

is called MD cell. Particles in it called MD particles 
with position vectors       ,                             . 
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For each cell, the three edge vectors 

                       (forming a right-handed triad) 
      are the period vectors of the system. 
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Degrees of freedom of the system. 

Then the MD particle position vectors and 
the period vectors are the full degrees of 
freedom of the system. 
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What about the periods?  

The dynamics of the particles is just 
Newton's Second Law on them. 
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Another respect: external forces 
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Another respect: external forces 
External forces will definitely cause its 
internal structure to change.  
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Another respect: external forces 
External forces will definitely cause its 
internal structure to change.  
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In 1980, Parrinello and Rahman  

proposed their theory of the period dynamics 
(PRMD), where they introduced a Lagrangian 
and brought it into the Lagrangian Dynamical 
Equation to produce dynamics for both the 
MD particles and the periods.  
 
 
and 
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Equations of PRMD (constant external pressure) 

with 
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PRMD 

combined with the well-known Car-Parrinello 
MD later, has been used extensively in many 
kinds of simulations. 
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In 1983, Nose and Klein pointed out 

in the paper  
 
 
This implies that the generated dynamical 
equations for the MD particles in PRMD are 
not that of Newton’s Second Law. 
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Another drawback in PRMD 
The generated dynamical equation for the 
periods under constant external stress  
 
 
 
in their paper                                                   . 
It is not in a form where the periods are driven 
by the imbalance between the internal and 
external stresses. Then when the system 

reaches an equilibrium state, the internal and 
external stresses may not balance each other. 
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In any case, PRMD 

can find the true equilibrium states under 
constant external pressure and zero 
temperature, when all velocities and 
accelerations are zero.  
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Not using Lagrangian Dynamics, we will 

Keep Newton’s Second Law for the MD 
particle as its original 

Apply Newton’s Second Law on halves of the 
system and statistics over system translation 
and particle moving directions to derive 
dynamical equations of the periods. 
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As a result, our 

dynamical equations are in the form where 
the periods are driven by the imbalance 
between internal and external stresses.  
 
The internal stress has both a full interaction 
term and a kinetic-energy term. 
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Some notations 

By using the periods                  ,   any cell can 
be represented with   
where                         are any integers. 
For the MD cell             . 
Cell volume  
Cell surface vectors: 
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More notations 

Only pair potential is considered  
 

 
Force acting on particle    in cell       by 
particle     in cell      is denoted with  
 
 
External stress          
with external   pressure       as a special case 
 
where        is a unit matrix. 
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Net force on the MD cell 

Since for any action from the green cell on 
the red MD cell, the reaction is equal to the 
action from the blue on the red, we have 
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Now let us first cut the system into two parts  

with plane        , so that for a given period    , 
the right          part contains  
cells of            , the rest in the left         part. 



A better illustration 

The red is the MD cell. 
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        The net external force on  

is the cross section vector in plane  
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        Newton’s Second Law on 

is the net force on         by  
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        Newton’s Second Law on 
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        Newton’s Second Law on 

is evenly distributed cell by cell in 
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        Newton’s Second Law on 

 “half cell bar” 



is the net force of blues on red and greens 

The red is the MD cell. 
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The net force of blues on red 

The red is the MD cell. 31 

is the negative of that of red on blues. 



The net force of blues on green 

The red is the MD cell. 32 

is the negative of that of red on blues. 



The net force of blues on green 

The red is the MD cell. 33 

is the negative of that of red on blues. 



The net force of blues on green 

The red is the MD cell. 34 

is the negative of that of red on blues. 



35 

        Newton’s Second Law on 



is the net force of blues on red and greens 

The red is the MD cell. 
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The net force of blues on red 

The red is the MD cell. 37 

is equal to that of red on greens. 



The net force of blues on green 

The red is the MD cell. 38 

is equal to that of red on greens. 



The net force of blues on green 

The red is the MD cell. 39 

is equal to that of red on greens. 



The net force of blues on green 

The red is the MD cell. 40 

is equal to that of red on greens. 
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        Newton’s Second Law on 



Recalling potential energy of the MD cell  
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Introducing main interaction tensor/dyad 
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Remembering 
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in 



The left side of 
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where                             and 
             
           and                                          is used. 



The left side of 
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where  
 
Since in        ,  any        is non-negative, and 
for any            ,  there exists            to cancel  
it, then               is zero.  
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        First form of the period dynamics 

directly from simplifying Newton’s Second Law            



Now let us consider two states 
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Only difference is translation between them. 



Since they are indistinguishable 
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We should take an unweighted average of the 
dynamical equations over all such states. 



In all such states, only            different  

50 



What we really need is the unweighted average of  
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What we really need is the unweighted average of  
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The total amount of such states can be represented 
by the volume of the MD cell        . 



What we really need is the unweighted average of  
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The total amount of such states can be represented 
by the volume of the MD cell        . 



Relative to             in the following situation, four cases 
should be considered for additional interactions. 
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represents the net force of blues on red and greens 

The red is the MD cell. 
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Case 1, whenever         passes through an MD particle,  
the old forces from blues on it should be deleted. 

 

56 

The amount of such states is 



Case 2, whenever         passes through an MD particle,  
the forces from it on yellows should be added. 
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The amount  of such states is 



Case 3, whenever          is between two MD particles,  
the forces from left on right should be added. 
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The amount  of such states is 



Case 4, whenever          is between two MD particles,  
the forces from left in the greens on right MD particles 

should be added. 
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The amount  of such states is 
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            Period Dynamics 

(first form) 

(improved) 

where the full interaction tensor 
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            Now let us consider 

forces associated with transport of momentum 
across geometrical planes,  
 
even without  collision or any other interactions 
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Forces only due to momentum transportation 

But what is it? 



63 

Considering a single particle  

without being acted by any regular force, 
but running with a constant velocity  



64 

Considering a single particle  

without being acted by any regular force, 
but running with a constant velocity  

Since it passes through many planes, is 
there any additional force acting on it? 



65 

Considering a single particle  

without being acted by any regular force, 
but running with a constant velocity  

Since it passes through many planes, is 
there any additional force acting on it? 
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As a matter of fact,  

systems can be defined in two ways. 
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The first way, 

systems are defined based on 
materials or particles. 
 
For example, the above single 
particle, then no additional force 
should be considered, in order to 
satisfy Newton’s Laws. 
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The other way, 

systems are defined based on space. 
 

For example, still for the same single particle 
running process, we can define systems like red and 
green boxes, only based on space. 
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When the particle passes through 
the plane between the red and green systems in  
the momentum of the systems are changed. In 
order to satisfy Newton’s Laws, we can say there 
are forces between the two systems 
This is the force purely associated with momentum 
transportation. 
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        Our half systems are indeed defined  based 
on space. Then such forces should be considered. 



In all the previous translated-only states 
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During a unit time, particles passes  
amount of states.  Then the total 
                                                should be added into the   
                                                dynamical equation. 
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            Period Dynamics 

(first form) 

(improved) 

(further improved) 

where the instantaneous internal stress 
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            The last consideration  

(further improved) 

where the instantaneous internal stress 

The periods should not depend on the 
instantaneous directions of particles 
microscopic motion, as they can be 
measured under constant external 
pressure and temperature. 
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            The last unweighted average of the 

(further improved) 

where the instantaneous internal stress 

over all particles’ moving directions. 
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            Period Dynamics 

(further improved) 

(last) 

where the internal stress  
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            Period Dynamics 

(first form) 

(improved) 

(further improved) 

(last) 
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                    Summary 
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Applications 

Applicable in any periodic system, especially in 
piezoelectric and piezomagnetic simulations. 
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Questions? 

More details: 
http://arxiv.org/pdf/cond-mat/0209372.pdf 
and some printed copies available for picking up. 
 
                   gang.liu@queensu.ca 
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