Belle II

Steven Robertson Institute of Particle Physics

& McGill University

IPP AGM Laurentian University June 15, 2014

Belle II

The Belle II experiment is a upgrade of the Belle at the KEK laboratory

- Target data set of 30x the combined integrated luminosity of BABAR + Belle
- Currently 600 collaborators from 97 institutions in 23 countries

KEKB accelerator substantially modified to provide beams for Belle II at up to 8x10³⁵ cm⁻²s⁻¹ luminosity

- 2.6A of e⁻ @ 7 GeV and 3.6A of e⁺ @ 4 GeV (currents 2x Belle)
- low-emittance ("nano-beam") design exploiting ILC and light-source technologies

June 15, 2014

Canadian involvement

Canadian groups joined Belle II in March 2013, following demise of Italian SuperB project

Participants:

U. British Columbia: C. Hearty, J. McKenna, T. Mattison, D. Fujimoto, (Chelsea Dunning)

U. Victoria: M. Roney, R. Kowalewski, R. Sobie, A. Beaulieu, S. de Jong, S. Longo, F. Berghaus, P. Poffenberger

McGill U.: S. Robertson, A. Warburton, R. Cheaib, R. Seddon, (A. Kollek)

U. Montreal: J.P. Martin, P. Taras, N. Starinski

Canadian groups responsible for upgrading the endcap calorimeter

- NSERC project grant (1-year) awarded in April 2013; project grant and RTI (CsI calorimeter R&D) awards for 2014
- Granted IPP project status
- TRIUMF Gate process in progress

Belle II physics program

Heavy flavour provides an ideal testing ground for precision probes of physics beyond the Standard Model

 Precision measurements across a large variety of independent decay channels provide stringent tests of the underlying physics, e.g.
 BABAR/Belle constraints on the CKM "unitarity triangle":

June 15, 2014

Belle II physics program

Very large, clean data samples of B and charm mesons, tau leptons and other e⁺e⁻ interaction products can be used to search for evidence of new particles or interactions in virtual loops

 Many observables sensitive to new physics: branching fractions, CP asymmetries, kinematic distributions, angular observables and asymmetries

Belle II physics program

Observable/mode	Current	LHCb	Belle-II	LHCb	theory
		(0017)	(0001)	upgrade	
	now	(2017) 5 fb-1	(2021)	(2028) 50 fb-1	now
2-	- 1	010 ·	08 OG	- DI 06	
$\tau = (x_10^{-9})$	71	Jecays	< 9		4
$\gamma \rightarrow \mu\gamma (\times 10^{-9})$	< 44		< 97 (ort)		
$\tau \rightarrow \ell \ell \ell (\times 10^{-10})$	< 150 970	- 244	< 3.7 (est.)	< 94	
$1 \rightarrow u (\times 10)$	< 150 - 270 B. J	Decevs	< 10	< 24	
$BB(B \rightarrow \tau \nu) (\times 10^{-4})$	1.64 ± 0.34	Decaya	0.04		11 ± 0.2
$BR(B \rightarrow \mu\nu) (\times 10^{-6})$	<10		0.03		0.47 ± 0.08
$BR(B \rightarrow K^{*+}\nu\pi) (\times 10^{-6})$	< 80		2.0		68 ± 11
$BR(B \rightarrow K^+ \nu \pi) (\times 10^{-6})$	< 160		1.6		36 ± 0.5
$BR(B \rightarrow X_{\gamma}) (\times 10^{-4})$	355 ± 0.26		0.13	0.23	3.15 ± 0.23
$A_{CP}(B \rightarrow X_{(n)}, p\gamma)$	0.060 ± 0.060		0.02	0.20	$\sim 10^{-6}$
$B \rightarrow K^* \mu^+ \mu^-$ (events)	250	8000	7-10k	100,000	-
$BR(B \to K^* \mu^+ \mu^-) (\times 10^{-6})$	1.15 ± 0.16		0.07		1.19 ± 0.39
$B \rightarrow K^* e^+ e^-$ (events)	165	400	7-10k	5,000	12
$BR(B \rightarrow K^*e^+e^-) \ (\times 10^{-6})$	1.09 ± 0.17	0551976	0.07	1016363	1.19 ± 0.39
$A_{FB}(B \rightarrow K^* \ell^+ \ell^-)$	0.27 ± 0.14	?	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		7,000		-
$BR(B \rightarrow X_s \ell^+ \ell^-) (\times 10^{-6})$	3.66 ± 0.77		0.10		1.59 ± 0.11
$S \text{ in } B \to K_s^0 \pi^0 \gamma$	-0.15 ± 0.20		0.03		-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.02		± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.03	0.03	± 0.02
	B_s^0	Decays	All and the second s	17 - 27) 17 - 24)	en) Ma company activity i
${ m BR}(B^0_s o \gamma \gamma) \; (\times 10^{-6})$	< 8.7		0.2 - 0.3		0.4 - 1.0
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96	?	5.		0.02 ± 0.01
$BR(B_s \rightarrow \mu\mu) \ (\times 10^{-9})$	2.9 ± 1.0	± 1		± 0.3	
$2\beta_s \text{ from } B^0_s \to J/\psi\phi$	0.13 ± 0.19	0.019		0.006	
$S \text{ in } B_s \to \phi \gamma$	0.07		0.02		
Since and the second	D 1	Decays			
\boldsymbol{x}	$(0.63 \pm 0.20\%$	0.06%	0.04%	0.02%	$\sim 10^{-2}$
y	$(0.75 \pm 0.12)\%$	0.03%	0.03%	0.01%	$\sim 10^{-2}$
<i>YCP</i>	$(1.11 \pm 0.22)\%$	0.02%	0.05%	0.01%	$\sim 10^{-2}$
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	4.4°	1.4°	2.0°	$\sim 10^{-3}$

Belle-II program spans wide range of topics in CKM and rare decay physics

In addition:

- Quarkonium spectroscopy and new states
- $e^+e^- \rightarrow hadrons (muon g-2)$
- Light Higgs, dark matter/forces searches

Complementary to LHCb due to clean analysis environment, and ability to reconstruct neutrals and missing energy

Adapted from Meadow's et al arXiv:1109.5028

Unique capability to study modes with missing energy

- Semileptonic B decays such as $B \rightarrow D^{(*)}lv$, $B \rightarrow \mu^+ v$, and $B \rightarrow \tau^+ v$ provide access to $|V_{ub}|$, $|V_{cb}|$ and potentially to tree-level new physics, e.g H⁺
- Also FCNC modes e.g. $B \rightarrow K^{(*)} \overline{vv}, B \rightarrow \Lambda p v \overline{v}, B \rightarrow v \overline{v}$ etc
- Not accessible at hadron colliders, but can be studied at Belle II using hadronic B-tag reconstruction method:

Belle II detector

June 15, 2014

Status of Belle-II

Schedule

Accelerator commissioning to begin in 2015, with first physics data taking by end of 2016

- Luminosity to ~8x10³⁵ by 2020 with ultimate target of 50 ab⁻¹ recorded
- Commissioning in three phases:

- Phase 1 (Jan May 2015): No superconducting IR magnets and no Belle II detector; basic tuning, vacuum scrubbing
- Phase 2 (Feb June 2016): Full accelerator and Belle II except vertex detector; beam collision tuning and background studies
- Phase 3 (late 2016): First physics with full detector (except partial iTOP) L = 10³⁴ cm⁻²s⁻¹ (comparable to BABAR/Belle)

Canadian activities

Belle II proposal to upgrade CsI(TI) endcap calorimeters with pure CsI, based on rate and radiation damage extrapolations from Belle/KEKB experience

 Canadian effort to focus on most critical region (inner rings in forward endcap); Italian and Russian groups to contribute additional rings

Pure CsI is more radiation hard, gives much faster signals (for pileup suppression) but also much less light

 Replace existing photodiodes with fine mesh PMTs, HV, new preamps, shapers and waveform digitization

Understanding and managing the radiation and beam background environment is critical for detector performance

- BEAST detector to be used for Phase 1 commissioning
 - PIN diode system (x-rays and neutrals) BGOs (luminosity monitors), TPCs (fast neutrons), He-3 tubes (thermal neutrons), Diamond sensor VXD beam abort system
- UVic group (Sam de Jong) developing thermal neutral detectors

Photo by Sam de Jong

June 15, 2014

Status of Belle-II

Electronics and performance

Preamplifier and shaper/digitizer being developed at UdM

 excellent performance from prototype preamp boards

PMT characterization and stability tests being developed by UBC group

Prototype preamp undergoing testing with CsI crystal and PMT at TRIUMF

McGill group working on development of Xenon-strobe light pulser calibration system

June 15, 2014

Status of Belle-II

Mechanical design and shielding

Although CsI crystals are geometrically identical to existing CsI(TI), PMT size, HV distribution, cooling, etc. impact detector layout

• Ongoing work by UVic group

Forward region of detector is high radiation environment, in part due to proximity to machine elements

- Addition of lead/steel shielding
 substantially reduces rates and dose
- Neutron shielding studies in progress

See talk by Alex Beaulieu

Computing

Belle II computing needs, collaboration wide, are of the same scale as the LHC experiments

- Computing model foresees hosting RAW data at KEK, with second copy distributed worldwide
- Canadian groups nominally responsible for ~4% of computing resources; in 2020 this amounts to ~1800 cores, ~3PB of storage

Compute Canada request for 2014 Belle II allocation for development of cloud (UVic) and grid (CLUMEQ) capabilities

- UVic developing "Infrastructure as a Service (laaS)" cloud MC production on OpenStack, Nimbus and commercial clouds (Amazon, Google etc)
- McGill HPC / CLUMEQ site operational since beginning
- of 2014, with sustained production on up to ~100 cores.

Recent News

Detailed simulation and physics studies by the Canadian group indicate that redesigned shielding, in combination with the ongoing electronics upgrade, substantially alleviate the rate/occupancy issues which motivate the calorimeter endcap upgrade:

- predicted crystal light loss due to radiation damage has not been demonstrated to lead to a measurable impact on physics
- beam background photons that make it past the shielding are heavily suppressed by improved feature extraction and timing information
- missing energy resolution dominated by hadronic shower fragments ("split-offs") rather than beam backgrounds
- no demonstrable impact on π^0 mass resolution

Currently in discussion with Belle II management as to how to proceed

 \Rightarrow Will not submit a CFI-8 proposal to fund the endcap upgrade

• continuing to work with calorimeter group to ensure best possible performance

Outlook and Future Plans

Will continue to participate in ongoing calorimeter group activities, while discussing plans for future contributions with Belle II management

- Accelerator/detector commissioning (BEAST)
- Shielding design •
- Calorimeter reconstruction software development and simulation studies

NSERC project grant application (and possibly RTI application) to be submitted this fall

 does not preclude possibility of future CFI application for Belle II detector hardware in future years

Currently "modest" computing needs will increase rapidly in future years as data taking and physics analysis activities ramp up

See Belle II overview talk by Chris Hearty for more details

Backup material

June 15, 2014

Canadian group are nominally responsible for ~5% of Belle II computing resources

• 10% of mDSTs, 3% of simulation and 5% of RAW

	Year (PB)	CPU		Storage	
		HEPSpec	Cores	Disk	Таре
Estimated Canadian shares	2014	4.3	300	0.0	Ō
	2015	4.3	300	0.15	0
	2016	5	330	0.2	0
	2017	9	630	0.4	0
	2018	9	630	0.4	0
	2019	16	1100	1.0	1
	2020	27	1800	1.6	2
	2021	34	2300	2.4	3
	2022	43	2900	3.1	5

Asymmetric B Factories

 Υ (4S) resonance lies just above the mass threshold for production of BB meson pairs

B⁰B⁰ pair is produced in a coherent L=1 state

The two B mesons evolve in phase until one decays (EPR situation)

Boost from asymmetric beam energies permits separation of (nearly at rest in CM frame) B meson decay vertices

~1.1 million BB pairs per fb⁻¹

Flavour and New Physics

 $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{k=1} (\sum_{i} C_{i}^{k} Q_{i}^{(k+4)}).$

Effective flavour-violating couplings

In explicit models:

A ~ mass of virtual particles

(e.g. Fermi theory: m_W)

C ~ (loop coupling) x (flavour coupling)

(e.g. SM/MFV: $\alpha_w x CKM$)

Precision flavour measurements provide bounds on ratio C / Λ i.e. constrain coupling strengths at any given mass scale Increasing luminosity

New Physics scale

Structure at loop level New structure often first appears through quantum corrections (aka radiative corrections, loop corrections, etc.)

June 15, 2014

Status of Belle-II

e⁺e⁻ collider facilities

February13, 2010 High Luminosity B Factories Steven Robertson IPP/McGill

Mass

New Physics signatures

Rare B decay

Other signals

¢ (or δ_{j})

- Various New Physics scenarios predict different patterns of deviations in flavour physics observables
 - Complementary information to direct measurements at the LHC

 B_d Unitarity | Time-dep. CPV

arge Extra Dimension models	

/ Model

SUSY	mSUGRA(moderate $\tan \beta$)	-	-	-	-
	mSUGRA(large $\tan \beta$)	B_d mixing	-	B ightarrow (D) au u	$B_s ightarrow \mu \mu$
				$b \rightarrow s \ell^+ \ell^-$	B_s mixing
	SUSY GUT with ν_R	-	$B ightarrow \phi K_S$	-	B_s mixing
			$B ightarrow K^* \gamma$		τ LFV, n EDM
	Effective SUSY	B_d mixing	$B \rightarrow \phi K_S$	$A_{CP}^{b \to s \gamma}, b \to s \ell^+ \ell^-$	B_s mixing
– . (KK graviton exchange	-	-	$b ightarrow s \ell^+ \ell^-$	-
ge Extra	Split fermions	B_d mixing	-	$b ightarrow s \ell^+ \ell^-$	$K^0\overline{K}{}^0$ mixing
nension J	in large extra dimensions				$D^0 \overline{D}^0$ mixing
dels	Bulk fermions	B_d mixing	$B \rightarrow \phi K_S$	$b \to s \ell^+ \ell^-$	B_s mixing
	in warped extra dimensions				$D^0 \overline{D}^0$ mixing
	Universal extra dimensioins	-	-	$b \to s \ell^+ \ell^-$	$K \to \pi \nu \overline{\nu}$
($b ightarrow s \gamma$	

(2003 SLAC Super B Factory Workshop Proceedings)

 $m_{2}_{3(13)}$

~ TeV

New Physics Parameter Space

How to get to high luminosity?

Luminosity equation

$$L=2.17\times10^{34}\frac{n\xi_{y}EI_{b}}{\beta_{y}^{i}}$$

- ξ_y Vertical beam-beam parameter
- I_b Bunch current (A)
- n Number of bunches
- β_{v}^{*} IP vertical beta (cm)
- E Beam energy (GeV)

Present day B-factories:

	PEP-II	KEKB
E(GeV)	9x3.1	8x3.5
b b	1x1.6	0.75x1
n	1700	1600
I (A)	1.7x2.7	1.2x1.6
β_v^* (cm)	1.1	0.6
ξ _v	80.0	0.11
L (x10 ³⁴)	1.2	2.0

