# Heavy-light diquark masses from QCD sum rules and constituent diquark models of XYZ states



Robin Kleiv

2014 CAP Congress

June 18, 2014

#### Outline

- 1. Heavy quarkonium-like states and exotic hadrons
- 2. QCD Laplace sum rules (QSR)
- 3. Heavy quarkonium-like four-quark states
- 4. QSR and diquarks
- 5. Results and Implications
- 6. Summary and Acknowledgements

#### Heavy quarkonium-like states

- Heavy quarkonia:
  - $\circ$  Charmonium  $(c\bar{c})$
  - $\circ$  Bottomonium  $(bar{b})$
- Charmonium spectrum
  - $\circ$  predicted  $car{c}$  states
  - unexpected states!
  - Some in Bottomonium spectrum, too.
- Heavy quarkonium-like states ("XYZ's")
  - Difficult to interpret as  $c\bar{c}$  or  $b\bar{b}$ .



#### Exotic hadrons

- All  $c\bar{c}$  states below 3.7 GeV have been discovered
  - Potential models reproduce masses of these very accurately.
  - The XYZ's were not predicted by potential models.
  - These only consider  $c\bar{c}$  states.
- Quark model (assumed by potential models): hadronic spectrum just  $q\bar{q}$  mesons, qqq baryons
  - $\circ$  QCD suggests hadrons other than  $q\bar{q}$  and qqq
- Exotic hadrons: hadrons outside the constituent auark model
  - What if the XYZ's are not  $c\bar{c}$  states? Could they be exotics?
  - Use QCD sum rules (QSR) to predict properties of exotics containing heavy quarks.



Normal meson



Hybrid meson



Tetraquark



Glueball

(physicsworld.com)

#### **Duality**

Hadrons can be described via QCD or as resonances.



Problem: unsuitable for studying hadrons in this form!

- Large contributions from excited states
- Unknown subtraction constants
- Field-theoretic divergences

•  $\Pi\left(Q^2\right)$  satisfies Schwarz reflection:  $\Pi\left(Q^2\right)=\overline{\Pi}\left(\overline{Q^2}\right)$ .  $\to$  It satisfies a dispersion relation, such as

$$\Pi(Q^{2}) = \Pi(0) + Q^{2}\Pi'(0) + \frac{Q^{4}}{\pi} \int_{t_{0}}^{\infty} dt \, \frac{\text{Im}\Pi(t)}{t^{2}(t+Q^{2})}$$

•  $\operatorname{Im}\Pi(t)$  is related to hadronic spectral function  $\rho^{\operatorname{had}}(t)$ 

 $\rightarrow$  something that can be measured/modeled



• Parametrize  $ho^{\mathrm{had}}\left(t
ight)$  in terms of resonance and continuum parts:

$$\rho^{\text{had}}(t) = \rho^{\text{res}}(t) + \theta(t - s_0) \operatorname{Im}\Pi(t)$$

 Taking the Borel (inverse Laplace) transform of the dispersion relation yields

$$\mathcal{R}_{k}^{\text{QCD}}\left(\tau, s_{0}\right) = \frac{1}{\pi} \int_{t_{0}}^{\infty} t^{k} e^{-t\tau} \rho^{\text{res}}(t) dt$$

$$\mathcal{R}_{k}^{\text{QCD}}\left(\tau,s_{0}\right) = \frac{\ddot{B}}{\tau} \left[ \left(-Q^{2}\right)^{k} \Pi\left(Q^{2}\right) \right] - \frac{1}{\pi} \int_{s_{0}}^{\infty} t^{k} e^{-t\tau} \operatorname{Im} \Pi\left(te^{-i\pi}\right) dt$$

Excited states suppressed, subtraction constants removed

•  $\Pi(q)$  is calculated within the **Operator Product Expansion** 

$$\begin{split} &\Pi\left(q\right) = \sum_{n} C_{n}\left(q\right) \left\langle O_{n} \right\rangle \; \rightarrow \; C_{n}(q) \; \text{expanded in} \; \alpha \\ &\left\langle O_{n} \right\rangle \in \left\{ I \, , \, m_{q} \left\langle \bar{q}q \right\rangle , \, \left\langle \alpha \, G^{2} \right\rangle , \, \left\langle \bar{q}\sigma Gq \right\rangle , \, \alpha \left\langle \bar{q}q \right\rangle^{2} , \, \ldots \right\} \end{split}$$

Resonance model in terms of hadron mass M

$$\rho^{\text{res}}(t) = \pi f^2 \delta\left(t - M^2\right) \quad \to \quad \left| M = \sqrt{\frac{\mathcal{R}_1^{\text{QCD}}(\tau, s_0)}{\mathcal{R}_0^{\text{QCD}}(\tau, s_0)}} \right|$$

• Stability of sum rule: M has minimal  $\tau$  dependence

#### Heavy quarkonium-like four-quark states

- Many XYZ's have been interpreted as four-quark states.
- X(3872), for example:
  - D-meson molecule (cf. Deuteron), or
  - Tetraquark (diquark-antidiquark bound state).

(M. Nielsen *et al.,* PR 497 (2010) 41)

To u u antidiquark - diquark

D°-D°0 "molecule"

#### Diguarks

- $\circ$  two-quark (qq) clusters inside hadrons
- Sometimes useful to think of as hadronic constituents
- Spin-0 (scalar) or Spin-1 (vector)
- $\circ$  Scalar and vector heavy-light (Qq) diquark masses should be degenerate

### Constituent diquark models of tetraquarks

- Tetraquarks can be studied using constituent diquark models:
  - $\circ M_{Qq}$  from fits to X(3872),  $Y_b(10890)$
  - $\circ$   $0^+$  and  $1^+$  diquarks assumed degenerate
  - $M_{cq} = 1.93 \, \mathrm{GeV}$  (Maiani *et al.*, PRD71 (2005) 014028).
  - $M_{bq} = 5.20 \,\mathrm{GeV}$  (Ali *et al.*, PRD85 (2012) 054011).
- Charged partners:
  - $\circ~Z_c^{\pm}(3900)$  discovered by BES-III (PRL 110 (2013) 252001), confirmed by Belle (PRL 110 (2013) 252002), CLEO (PLB 727 (2013) 366).
  - Predicted by Maiani et al. on basis on constituent diquark model
  - o Other charged heavy quarkonium-like states found recently.
- QSR studies of heavy-light diquarks: calculate heavy-light constituent diquark mass.
  - QCD-based test of constituent diquark models.

#### QSR studies of four-quark states

- QSR studies of four-quark states among XYZ's.
  - o Review: Nielsen, Navarra, Lee, Phys. Rept. 497 (2010) 41.
  - Most use four quark currents and are leading-order calculations.
- Molecular and tetraquark currents mix under Fierz transformations.
  - QSR calculations that use four quark currents cannot distinguish between the molecular and tetraquark scenarios.
- Fierz transformation ambiguity can be addressed by using diquark currents (Zhang, Huang, Steele, PRD76 (2007) 036004).
  - QSR determination of constituent diquark mass.
  - Diquarks are relevant for tetraquarks, not molecules.
  - Study pure tetraquark states via QSR.

### NLO QSR studies of four-quark states

- Composite operator renormalization needed for NLO QSR calculations.
  - Composite operators can mix with lower dimensional operators with the same quantum numbers.
  - (Ex) Four-quark currents mix with other operators.
  - Operator mixing is a significant technical barrier to NLO QSR calculations.
- The diquark current is protected from operator mixing:
  - No lower dimensional operators with the same quantum numbers.
  - Renormalizes multiplicatively.
- Four-quark current vs. diquark current approach to studying four-quark states in QSR:
  - Diquark operator does not mix with other composite operators,
  - QSR analyses of diquarks can be extended to higher orders more easily.

#### Diquark current renormalization

- We have calculated the scalar  $\left(J^P=0^+\right)$  diquark renormalization factor to two-loop order:
  - o Kleiv, Steele, JPG38 (2011) 025001.
- Exploited the relationship between diquark and meson currents.
  - $\circ$  Easy to extend to  $J^P=0^-\,,1^\pm$  diquarks at one-loop level.
- The  $J^P=0^\pm\,,1^\pm$  diquark operator renormalization factors are needed in NLO QSR studies of diquarks.
  - Used in NLO calculation of heavy-light diquark mass.

### QSR studies of diquarks

- Original QSR studies of light (qq) diquarks:
  - Dosch, Jamin, Stech ZPC 42 (1989) 167; Jamin, Neubert PLB 238 (1990) 387
- Updated by Zhang, Huang, Steele, PRD76 (2007) 036004
  - Constituent light diquark mass → light tetraquarks
- Heavy-light (Qq) diquarks :
  - Wang, EPJC71 (2011) 1524
    - $\rightarrow$  LO calculation of constituent diquark mass
  - Kleiv, Steele, Zhang, Blokland, PRD 87 (2013) 125018
    - $\rightarrow$  NLO calculation of constituent diquark mass, including negative parity diquarks

### **Diquark Correlation Function**

$$\Pi(q) = i \int d^4x \, e^{iq \cdot x} \langle 0 | T \left[ J_{\alpha}(x) S_{\alpha\omega} \left[ x, 0 \right] J_{\omega}^{\dagger}(0) \right] | 0 \rangle$$

$$J_{\alpha} = \epsilon_{\alpha\beta\gamma} Q_{\beta}^{T} C \mathcal{O} Q_{\gamma} \quad \langle 0 | J_{\alpha} | D_{\beta} \rangle = g_{D} \delta_{\alpha\beta}$$

$$S_{\alpha\omega} [x, 0] = P \exp \left[ ig \frac{\lambda_{\alpha\omega}}{2} \int_0^x dz^{\mu} A_{\mu}^a(z) \right]$$
$$= \delta_{\alpha\omega} + ig \frac{\lambda_{\alpha\omega}^a}{2} \int_0^1 d\xi A_{\mu}^a(\xi x) x^{\mu}$$
$$+ \mathcal{O} (g^2)$$

#### Current and ${\bf J}^{\bf P}$

| 0                                                 | $J^P$                     |
|---------------------------------------------------|---------------------------|
| $\gamma_5 \ I \ \gamma_\mu \ \gamma_\mu \gamma_5$ | $0^{+}$ $0^{-}$ $1^{+}$ , |

### Diquark Correlation Function

$$\Pi(q) = \mathbf{C}^{\mathbf{I}}(\mathbf{q}) + \mathbf{C}^{\mathbf{q}\mathbf{q}}(\mathbf{q})\langle \bar{q}q \rangle + \mathbf{C}^{\mathbf{G}\mathbf{G}}(\mathbf{q})\langle \alpha G^{2} \rangle + \mathbf{C}^{\mathbf{q}\mathbf{G}\mathbf{q}}(\mathbf{q})\langle \bar{q}\sigma Gq \rangle + \mathbf{C}^{\mathbf{q}\mathbf{q}\mathbf{q}\mathbf{q}}(\mathbf{q})\langle \bar{q}q \rangle^{2} + \dots$$



#### **Diquark Correlation Function**

- Gauge invariance
  - Schwinger string exactly cancels gauge depedence of perturbative contributions
  - $\circ$  Condensates calculated in background gauge:  $x^{\mu}A^{a}_{\mu}=0$
- Renormalization
  - Use known diquark current renormalization factor
  - Renormalization-induced contributions from LO perturbative contribution



# Heavy-Light diquark mass predictions



- Scalar/vector masses are degenerate within uncertainty
- Negative parity sum rules are unstable → unable to make mass predictions (in agreement with QSR results for light diquarks)

#### Implications for the XYZ states

- 1. QSR determined heavy-light diquark masses are consistent with constituent models.
  - → QCD support for constituent diquark models of tetraquarks.
- 2. Strengthens tetraquark interpretation of X(3872),  $Y_b(10890)$ .
- 3. Support for tetraquark interpretation of charged heavy quarkonium-like states

#### Summarv

- QSR predictions for heavy-light diquarks
  - QCD-based test of constituent diquark models
  - QSR support for tetraguark interpretation of X(3872),  $Y_b(10890)$  and charged heavy quarkonium-like states
  - Will help to determine the identities of the XYZ states.
- Exciting time for hadron spectroscopy:
  - Many XYZ states discovered, perhaps more to come?
  - New experiments: Belle-II, BES-III, Glue-X, LHCb, PANDA.
  - Lots of data to come!















#### **Acknowledgements**

- Collaborators
  - Tom Steele (Saskatchewan), Ailin Zhang (Shanghai), Ian Blokland (Alberta)
- Financial support
  - National Science and Engineering Research Council of Canada
  - University of the Fraser Valley and St. Peter's College
- CAP 2014 Conference Organizers
- DTP and DNP divisions
- Preprints and links to published papers are available at
  - o http://arxiv.org/a/kleiv\_r\_1

# Thanks!

# **Backup Slides**

# $J^{PC}$ quantum numbers

- Hadrons are classified by their  $J^{PC}$ :
  - $\circ J = L + S$  is the angular momentum
  - $\circ P$  is parity (P = + or -)
  - $\circ$  C is charge conjugation (C = + or -)
- Conventional quarkonia have  $P = (-)^{L+1}$  and  $C = (-)^{L+S}$ 
  - Possible (non-exotic)  $J^{PC}$ :  $0^{-+}$ ,  $1^{--}$ ,  $1^{+-}$ ,  $0^{++}$ ,  $1^{++}$ ,  $2^{++}$  ...
  - Impossible (exotic)  $J^{PC}$ :  $0^{--}$ ,  $0^{+-}$ ,  $1^{-+}$ ,  $2^{+-}$ , ...



• The observation of a state with exotic  $J^{PC}$  is a "smoking gun" for the existence of exotic hadrons.

# 2012 RPP - Developments in Heavy Quarkonium Spectroscopy

| State                | $m~({ m MeV})$   | $\Gamma~(\mathrm{MeV})$             | $J^{PC}$                                    | Process (mode)                              | Experiment $(\#\sigma)$                | Year | Status |
|----------------------|------------------|-------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|------|--------|
| X(3872) 3871.68±0.17 | 3871.68±0.17     | < 1.2                               | 1++/2-+                                     | $B \rightarrow K (\pi^+\pi^- J/\psi)$       | Belle [36,37] (12.8), BABAR [38] (8.6) | 2003 | ОК     |
|                      |                  |                                     | $p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) +$ | CDF [39-41] (np), D0 [42] (5.2)             |                                        |      |        |
|                      | B<br>1           |                                     | $B \rightarrow K (\omega J/\psi)$           | Belle [43] (4.3), BABAR [23] (4.0)          |                                        |      |        |
|                      |                  |                                     | $B \rightarrow K (D^{*0}\overline{D}^{0})$  | Belle [44,45] (6.4), BABAR [46] (4.9)       |                                        |      |        |
|                      |                  |                                     | $B \rightarrow K (\gamma J/\psi)$           | Belle [47] (4.0), BABAR [48,49] (3.6)       |                                        |      |        |
|                      |                  | $B \rightarrow K (\gamma \psi(2S))$ | BABAR [49] (3.5), Belle [47] (0.4)          |                                             |                                        |      |        |
|                      |                  |                                     | $pp \rightarrow (\pi^+\pi^-J/\psi) +$       | LHCb [50] (np)                              |                                        |      |        |
| X(3915)              | $3917.4 \pm 2.7$ | $28^{+10}_{-9}$                     | $0/2^{?+}$                                  | $B \rightarrow K (\omega J/\psi)$           | Belle [51] (8.1), BABAR [52] (19)      | 2004 | OK     |
|                      |                  | ,                                   |                                             | $e^+e^- \rightarrow e^+e^- (\omega J/\psi)$ | Belle [53] (7.7), BABAR [23] (np)      |      |        |

Note: Here Y(3940) is listed as X(3915).

#### Sum rule window

- We need to balance perturbative and non-perturbative effects.
  - If perturbative effects are too large, continuum contributions dominate.
  - If non-perturbative effects are too large, we can have large errors in our mass prediction.
- ullet An acceptable range of au values can be determined using

$$f_{\text{cont}}\left(\tau, s_{0}\right) = \frac{\mathcal{L}_{1}^{\text{QCD}}\left(\tau, s_{0}\right) / \mathcal{L}_{0}^{\text{QCD}}\left(\tau, s_{0}\right)}{\mathcal{L}_{1}^{\text{QCD}}\left(\tau, \infty\right) / \mathcal{L}_{0}^{\text{QCD}}\left(\tau, \infty\right)} \geq 0.7$$

$$f_{\text{pow}}\left(\tau, s_{0}\right) = \left|\frac{\mathcal{L}_{1}^{\text{QCD}}\left(\tau, s_{0}\right) / \mathcal{L}_{0}^{\text{QCD}}\left(\tau, s_{0}\right)}{\mathcal{L}_{1}^{\text{pert}}\left(\tau, s_{0}\right) / \mathcal{L}_{0}^{\text{pert}}\left(\tau, s_{0}\right)} - 1\right| \leq 0.15$$

- The mass function  $M^2 = \mathcal{L}_1^{\rm QCD}\left(\tau\,,s_0\right)/\mathcal{L}_0^{\rm QCD}\left(\tau\,,s_0\right)$  must stabilize (have a critical point) within the sum-rule window.
- Optimal  $s_0$  found though best fit of  $M^2$  to a constant.