Nuclear astrophysics with DRAGON

Greg Christian

TRIUMF

June 16, 2014

1/28

Heavy element synthesis

- Hydrogen, helium, and a small amount of lithium were formed in the Big Bang.
- Everything else formed in stellar environments, primarily explosive stellar events (novae, supernovae, X-ray bursts).
- Laboratory measurements of radiative capture rates [(p, γ), (α, γ)] are crucial inputs to models of stellar explosions.

- Heavy nucleus (mass M) captures a "light" nucleus (mass m).
- Product nucleus (mass M') de-excites by emitting γ rays.

Benefits

- Pure gas targets (H_2, H_2) often results in simpler experiments (vs. using a solid target).
- Combined with recoil separators, one gets very high background suppression: measurements of very weak reactions possible in terrestrial labs.
- Experiments involving short-lived radioactive nuclei possible.

DRAGON

Measurements at DRAGON

Chart of the nuclides

Present (Two weeks old)

• First direct measurement of ${}^{38}K(p,\gamma){}^{39}Ca$.

Future (Next year or so)

• Approved proposal to measure ${}^{18}\mathsf{F}(p,\gamma){}^{19}\mathsf{Ne}$ via ${}^{15}\mathsf{O}(\alpha,\gamma){}^{19}\mathsf{Ne}.$

Present

• First direct measurement of ${}^{38}K(p,\gamma){}^{39}Ca$

ONe Novae

- ${}^{38}K(p,\gamma){}^{39}Ca$ one of a handful of "significant" reactions¹.
- Currently no experimental information on this reaction: "uncertainty" of 10⁴.
- \bullet Varying the rate can change the respective abundances of ^{38}Ar $^{39}K,$ and ^{40}Ca in ejecta by factors of \sim 18, \sim 17, and \sim 24.

¹C. Illiadis et al., Astrophys. J Suppl. Ser. 142, 105 (2002).

³⁹Ca

	$E_{level} \left(E_{res} \right)$	$S_p = 57$	70.9(6) 1	keV	
	6722 (951 ke	V)	(7/2-)	1	
	6629 (858 ke	V)			
	6580 (809 ke	V)	(7/2-)		
\rightarrow	<u>6514 (743 ke</u>	V)	(5/2+)		
	6460 (689 ke	V)	5/2+	GAMOW	V
	<u>6432 (661 ke</u> 6405 (634 ke	V) V)	<u>(15/2+)</u> (7/2-)	WINDOW	V
				T = 0.2-0.4	GK
\rightarrow	6286 (515 ke	V)	5/2+		
\rightarrow	<u>6157 (386 ke</u>	V)	5/2+		
	6094 (323 ke	V)	(1/2+)		
\rightarrow	6460 (689 ke 6432 (661 ke 6405 (634 ke 6286 (515 ke 6157 (386 ke 6094 (323 ke	V) V) V) V) V) V)	<u>5/2+</u> (<u>15/2+</u>) (<u>7/2-</u>) <u>5/2+</u> <u>5/2+</u> (<u>1/2+</u>)	GAMOW WINDOV FOR T = 0.2-0.4	/ V Gl

- Astrophysical reaction expected to be dominated by low-l capture to states within the Gamow Window.
- Focus on three resonances:
 - $E_r = 743$ keV (proof of principle).
 - $E_r = 515$ keV.
 - $E_r = 386 \text{ keV}.$

・ロト ・四ト ・ヨト ・ヨト

11/28

Э

³⁸K

- Heaviest re-accelerated RIB ever sent to ISAC-I.
- Requires use of new TRIUMF charge state booster (first time in ICAC-I).
- CSB contaminants: ³⁸Ar, ⁷⁶Se

イロト イヨト イヨト イヨト

13/28

Recoils

- Clear recoil signal in separator vs. MCP TOF.
- 27 candidate recoils in preliminary analysis.

$E_r = 743$ keV: Beam normalization

Integrated beam current

- Detect γ rays from decay of implanted 38 K: photopeak efficiency \simeq 4.94 \times 10⁻⁶, charge state fracion \sim 30%.
- Total ^{38}K on target: 4.7×10^{12} (4.1 $\times\,10^7$ pps).

$E_r = 743$ keV: Strength

Resonance strength

$$\omega \gamma = \frac{2Y\epsilon}{\lambda_{cm}^2} \frac{m}{m+M}$$

Yield Y

 \bullet 27 recoils, 50% BGO efficiency, 76% recoil detection efficiency, 30% CSF, 4.7 \times 10^{12} beam on target.

 $5.0 imes 10^{-11}$

Stopping power ϵ

• From target pressure vs. beam energy measurements.

144 eV cm $^2/$ 10^{15} atom

Result [preliminary]

 $\omega\gamma=30~{\rm meV}$

イロト イポト イヨト イヨト 二日

- Sum of γ -ray energies matches the Q value of the reaction (6.514 MeV).
- BGO *z* position indicates resonance is downstream in the target: determination of resonance energy should be possible.

• No indication of recoils in $E_r = 386$ keV, 515 keV measurements.

Resonance strength

$$\omega \gamma = \frac{2Y\epsilon}{\lambda_{cm}^2} \frac{m}{m+M}$$

Number of recoils (both cases)

- Feldman-Cousins upper limit: 1.29 counts (zero signal, zero b.g.).
- Efficiency: 50% BGO, 76% separator, 30% CSF.
- $N_r \leq 11.3$ recoils.

$E_r = 386 \text{ keV}$	$E_r = 515 \text{ keV}$	
• 6.0×10^{12} ³⁸ K on target: $Y \le 1.9 \times 10^{-12}$	• 1.4×10^{12} ³⁸ K on target: $Y \le 7.8 \times 10^{-12}$	
• $\epsilon = 135 \text{ eV cm}^2/\ 10^{15}$ atom.	• $\epsilon = 139 \text{ eV cm}^2/\ 10^{15}$ atom.	
• $\omega\gamma\leq$ 640 $\mu\mathrm{eV}.$	• $\omega\gamma\leq$ 3.4 meV.	

${}^{38}{ m K}(p,\gamma){}^{39}{ m Ca}$

- Weak strengths of lower-lying resonances suggests lower astrophysical reaction rate.
- Is ${}^{38}K(p,\gamma){}^{39}Ca$ a possible endpoint for nucleosynthesis in ONe novae?
- Collaboration with modelers will be necessary to discern the real consequence of the measurement.

Future

• ${}^{18}\mathsf{F}(p,\gamma){}^{19}\mathsf{Ne}$ via ${}^{15}\mathsf{O}(\alpha,\gamma){}^{19}\mathsf{Ne}$

^{18}F

- Important in classical novae.
- Half life of 1.8 hours, source of 511 keV γ rays observed in satellite telescopes.
- Production (and destruction) of $^{18}{\rm F}$ must be well understood: need experimental constraints on $^{18}{\rm F}(p,\gamma)^{19}{\rm Ne}.$

- DRAGON previously measured the strength of the 665 keV resonance.¹
- $\bullet\,$ Two recoils observed in around one week of beam time $\Rightarrow \omega \gamma = 19^{+45}_{-16}\,\,{\rm meV}.$
- 330 keV resonance completely dominates the rate at nova temperatures.
- Would measure $E_r = 330$ keV directly, except ¹⁸F beam intensities are too low.

¹C. Akers et al., Phys. Rev. Lett. 110, 262502 (2013).

$E_r = 330$ keV: Technique

Relating resonance strengths

$$\begin{aligned} (\omega\gamma)_{^{18}\mathsf{F}+p} &= \frac{(2\ell_{^{15}\mathsf{O}}+1)(2\ell_{\alpha}+1)}{(2\ell_{^{18}\mathsf{F}}+1)(2\ell_{p}+1)} \times \frac{\mathsf{\Gamma}_{\rho}}{\mathsf{\Gamma}_{\alpha}} \, (\omega\gamma)_{^{15}\mathsf{O}+\alpha} \\ &= \frac{\mathsf{\Gamma}_{\rho}}{3\mathsf{\Gamma}_{\alpha}} \, (\omega\gamma)_{^{15}\mathsf{O}+\alpha} \end{aligned}$$

◆□> ◆□> ◆臣> ◆臣>

Plan

- Measure $(\omega\gamma)_{15}_{O+\alpha}$ and Γ_{α} at DRAGON: deduce $(\omega\gamma)_{18}_{F+p}$ (Γ_p already known).
- $(\omega\gamma)_{^{15}\text{O}+lpha}$: standard DRAGON measurement, possible with $\sim 1 imes 10^6$ pps ^{15}O .
- Measure Γ_{α} by ${}^{15}O(\alpha, \alpha){}^{15}O$ elastic scattering.

• SPIKE (Scattering of Protons in Inverse Kinematics) chamber designed for elastic scattering.

• Commissioning scheduled for August, 2014.

Photodiodes

- $\bullet~^{15}\text{O}$ current of 1×10^6 pps is too low to read on Faraday cups and slits.
- $\bullet\,$ Send attenuated beam directly into $1\times 1\mbox{ cm}^2$ photodiode detectors as an alternative:
- Three detectors in total:
 - Upstream of gas target.
 - Ownstream of gas target.
 - Ownstream of first charge slit.
- Allows for gas target transmission optimization and beam energy measurement; scaling of full DRAGON tune past MD1.

Photodiode energy measurement

- With slits closed to 2 mm, maximize rate on the photodiode.
- Energy measurement 0.3% off compared with standard tuning.
- Tests measuring 3.212 MeV resonance in $^{15}N(\alpha,\gamma)^{19}F$ indicate \sim 10% systematic error when tuning with PDs (mainly due to transmission).

Collaborators

TRIUMF

• Chris Ruiz, Jennifer Fallis, Dave Hutcheon, Alex Rojas, Barry Davids, Charlie Akers, Lothar Buchmann

University of Surrey

• Gavin Lotay

University of York

• Alison Laird, Charlie Akers, Brian Fulton

Colorado School of Mines

• Ulrike Hager, Devin Connol, Adam Mahl, Uwe Greife

McMaster University

• Alan Chen, Devin Burke

Michigan State University

• Artemis Spyrou, Steve Quinn, Anna Simon