

CAP Congress 2014, Sudbury June 17th, 2014

Alex Wright
IPP and Queen's University
For the SNO+ Collaboration

- SNO heavy water replaced by 780 tonnes of liquid scintillator
- ~9500 PMTs
- 1700 + 5700 tonnes ultra-pure water shielding
- New rope net to hold down the 6m radius acrylic vessel
- 6800' underground in SNOLAB

Neutrinoless Double Beta Decay

- Are neutrinos Majorana or Dirac particles?
 - Are they their own anti-particles?
- In double beta decay, a nucleus releases two electrons and two antineutrinos:

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu}_{e}$$

 If neutrinos are Majorana, sometimes neutrinoless double beta decay occurs:

$$(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$$

Detection of neutrinoless double beta decay proves that neutrinos are Majorana and provides information about the neutrino mass.

Neutrinoless Double Beta Decay

Image from Elliott and Vogel, hep-ph/0202254

Searching for neutrinoless double beta decay involves looking for a tiny monoenergetic peak at the end of a large double beta decay continuum.

D.B.D. experiments need good energy resolution, low backgrounds, and large amounts of isotope.

Load Tellurium into the SNO+ Scintillator

- 760 tonne detector and high ¹³⁰Te isotopic abundance gives large isotope mass
 - 0.3 0.5% Te (by weight) in SNO+ Phase I is 2.34 3.9 tonnes of Te or **800 1333 kg** of ¹³⁰Te
 - Percent-level loading is feasible
 - 3% Te in SNO+ Phase II would give 8 tonnes of ¹³⁰Te
 - Te cost would be ~\$15M

Load Tellurium into the SNO+ Scintillator

- Very low backgrounds are achievable in large liquid scintillator detectors
 - The U chain background (²¹⁴Bi-²¹⁴Po) in the energy range around the ¹³⁰Te endpoint (2.53 MeV) can be rejected by factor >5,000 using delayed coincidences
 - The 2νββ for Te is relatively small
 - External backgrounds controlled by fiducialization

Extremely low background compensates for modest energy resolution.

If the TeLS is sufficiently radiopure, the dominant background in SNO+ will be 8B solar neutrinos. Then sensitivity scales directly with Te loading!

Tellurium Purification

- Two main classes of Te intrinsic background:
 - "Standard" decay chains of long-lived radioisotopes
 - Need 10⁻¹⁴-10⁻¹⁵g/g ²³⁸U, ²³²Th,
 "raw" tellurium has ~10⁻¹²g/g
 - Te cosmogenics have longish half-lives and decays that overlap the 0vββ energy region
- Need a purification technique that separates other metals from tellurium at the 10⁴-10⁶ level

Cosmogenic				
Backgrounds in				
SNO+ ROI – year 1				
$^{22}\mathrm{Na}$	15309			
26 Al	0.048			
$^{42}\mathrm{K}$	565			
$^{44}\mathrm{Sc}$	102			
$^{46}\mathrm{Sc}$	43568			
$^{56}\mathrm{Co}$	2629			
$^{58}\mathrm{Co}$	25194			
$^{60}\mathrm{Co}$	6906			
$^{68}\mathrm{Ga}$	37343			
$^{82}{ m Rb}$	18047			
$^{84}\mathrm{Rb}$	11850			
^{88}Y	390620			
^{90}Y	823			
$^{102}\mathrm{Rh}$	276189			
$^{102m}\mathrm{Rh}$	133848			
$^{106}\mathrm{Rh}$	1534			
$^{110m}\mathrm{Ag}$	69643			
$^{110}\mathrm{Ag}$	939			
$^{124}\mathrm{Sb}$	3101138			
$^{126m}\mathrm{Sb}$	240			
$^{126}\mathrm{Sb}$	358996			

See: V. Lozza and J. Petzoldt *Cosmogenic activation of a natural tellurium target*. Submitted to Astropart. Phys.

pH Selective Telluric Acid Recrystallization

Telluric acid obeys the following equilibrium:

$$Te(OH)_6 \leftrightarrow Te(OH)_5O^- + H^+$$
Insoluble Soluble

- pH determines the equilibrium state
- Purification basics:
 - 1. Dissolve telluric acid in water and filter it
 - Removes insoluble impurities
 - Add nitric acid to force the telluric acid to recrystallize/precipitate, pump away the liquid, rinse with ethanol
 - Removes soluble impurities
- By "tuning" the process pH's, this can be quite specific to telluric acid – most other chemicals are removed with high efficiency

Measured Single Pass Purification Factors

Element	Reduction Factors From Spike Tests	Non-spiked, before purification (ppb)	Non-spiked, after purification (ppb)
Sn	$>1.67\times10^2$	20	<20
Zr	$>2.78\times10^2$	70	<10
Ti		40	<10
Co	$(1.62\pm0.34)\times10^3$	<10	<10
Mn		150	<5
Fe		40	<30
Ag	>2.78×10 ²	<10	<10
Y	$>2.78\times10^2$	<10	<10
Sc	>1.65×10 ²	<10	<10
Sb	$>2.43\times10^2$	20	<20
Th	$(3.90\pm0.19)\times10^2$	< 0.02	< 0.02
Ra	$(3.97\pm0.20)\times10^2$		
Ba		1400	<5
Pb	$(2.99\pm0.22)\times10^2$	440	<3
Bi	$(3.48\pm0.81)\times10^2$	300	<10
U	$(3.90\pm0.19)\times10^2$	< 0.02	< 0.02

Two-pass purification should meet our purity goals.

Re-Growth of Cosmogenics

- The nitric acid recrystallization process must be done above ground for safety
- Cosmogenic isotopes redevelop between the end of purification and moving the Te underground
 - Even with a 5 hour transit time (our goal) the cosmogenic regeneration is too great
 - Half-lives of regenerated isotopes are mainly short, but too long for them to decay away sufficiently on SNO+ timescales

Cosmogenic backgrounds – year 1			
	No purification	Purification + 5 hrs re-activation	
$^{22}\mathrm{Na}$	15309	10.82	
26 Al	0.048	0.0001	
$^{42}\mathrm{K}$	565	50.76	
$^{44}\mathrm{Sc}$	102	33.83	
$^{46}\mathrm{Sc}$	43568	90.27	
$^{56}\mathrm{Co}$	2629	5.12	
$^{58}\mathrm{Co}$	25194	52.95	
$^{60}\mathrm{Co}$	6906	4.23	
$^{68}\mathrm{Ga}$	37343	76.22	
$^{82}{ m Rb}$	18047	105.25	
$^{84}\mathrm{Rb}$	11850	53.68	
⁸⁸ Y	390620	409.88	
^{90}Y	823	28.83	
$^{102}\mathrm{Rh}$	276189	338.49	
$^{102m}\mathrm{Rh}$	133848	114.51	
$^{106}\mathrm{Rh}$	1534	1.57	
$^{110m}\mathrm{Ag}$	69643	69.45	
$^{110}\mathrm{Ag}$	939	0.94	
$^{124}\mathrm{Sb}$	3101138	7971.93	
$^{126m}\mathrm{Sb}$	240	238.24	
$^{126}\mathrm{Sb}$	358996	4271.15	

Underground "Polishing" Process

- The solubility of telluric acid in water is also temperature dependent
 - Can re-crystallize by dissolving to saturation in warm water and then cooling
 - Less efficient, but good enough to remove cosmogenic re-growth with two passes (need factor of 100 suppression)
 - Te yield is low (~70%/pass)
 - Take residual solution back to surface and process with nitric to recover Te

Element	Single Pass Reduction Factor			
Ag	>144			
Со	240			
Ge	86			
Sb	76			
Sc	198			
Sn	99			
Υ	500			
Zr	104			

Underground "Polishing" Process

- The solubility of telluric acid in water is also temperature dependent
 - Can re-crystallize by dissolving to saturation in warm water and then cooling
 - Less efficient, but good enough to remove cosmogenic re-growth with two passes (need factor of 100 suppression)
 - Te yield is low (~70%/pass)
 - Take residual solution back to surface and process with nitric to recover Te

	No purification	Purification + 5 hrs re-activation + "polishing" & 6 month cool-down
$^{22}\mathrm{Na}$	15309	0.0947
26 Al	0.048	5.724E-7
$^{42}\mathrm{K}$	565	0.0044
$^{44}\mathrm{Sc}$	102	0.0004
$^{46}\mathrm{Sc}$	43568	0.1993
$^{56}\mathrm{Co}$	2629	0.0099
$^{58}\mathrm{Co}$	25194	0.0888
$^{60}\mathrm{Co}$	6906	0.0396
$^{68}\mathrm{Ga}$	37343	0.2201
$^{82}{ m Rb}$	18047	0.0071
$^{84}{ m Rb}$	11850	0.0113
^{88}Y	390620	2.3079
^{90}Y	823	0.0019
$^{102}\mathrm{Rh}$	276189	1.8389
$^{102m}\mathrm{Rh}$	133848	1.0438
$^{106}\mathrm{Rh}$	1534	0.0111
$^{110m}\mathrm{Ag}$	69643	0.4184
$^{110}\mathrm{Ag}$	939	0.0056
$^{124}\mathrm{Sb}$	3101138	9.7353
$^{126m}\mathrm{Sb}$	240	1.205E-5
$^{126}\mathrm{Sb}$	358996	0.0015

Underground "Polishing" Process

- The solubility of telluric acid in water is also temperature dependent
 - Can re-crystallize by dissolving to saturation in warm water and then cooling
 - Less efficient, but good enough to remove cosmogenic re-growth with two passes (need factor of 100 suppression)
 - Te yield is low (~70%/pass)
 - Take residual solution back to

	No purification	Purification + 5 hrs re-activation + "polishing" & 6 month cool-down
$^{22}\mathrm{Na}$	15309	0.0947
26 Al	0.048	5.724E-7
$^{42}\mathrm{K}$	565	0.0044
$^{44}\mathrm{Sc}$	102	0.0004
$^{46}\mathrm{Sc}$	43568	0.1993
$^{56}\mathrm{Co}$	2629	0.0099
$^{58}\mathrm{Co}$	25194	0.0888
$^{60}\mathrm{Co}$	6906	0.0396
$^{68}\mathrm{Ga}$	37343	0.2201
$^{82}{ m Rb}$	18047	0.0071
$^{84}{ m Rb}$	11850	0.0113
^{88}Y	390620	2.3079
$^{90}\mathrm{Y}$	823	0.0019
$^{102}\mathrm{Rh}$	276189	1.8389
102m Rh	133848	1.0438

Two passes each of nitric acid recrystallization and "polishing" reduces both long-lived and cosmogenic isotope backgrounds to acceptable levels.

Scale-Up

- Working with an industrial partner (SeaStar Chemicals, Sydney, BC) to scale processes up to ~200kg batch size
 - A few months to process the 4 tonnes of telluric acid for 0.3% loading
- Currently operating a 10kg pilot-scale plant
- Plan to have the full-scale system at SNOLAB this winter

Summary

- SNO+ will search for neutrinoless double beta decay by dissolving Te into the liquid scintillator
 - Initial phase with 0.3 0.5% loading
 - Higher loadings possible in the future
- Techniques for removing radioactive impurities from the tellurium have been developed and successfully tested
 - Development of the large scale
 Te purification plant is in progress
- Clean Te will help SNO+ to achieve world-leading sensitivity to neutrinoless double beta decay

Isotope	T _{1/2} [1]	O-value [1]	$R \ (\phi \ \text{from} \ [2][3])$	Events V1
воюре	$[\mathbf{d}]$	[MeV]	$[\mu \mathrm{Bq/kg}]$	$t_{exp}=1 \text{ yr}$
$^{22}\mathrm{Na}$	950.6	2.84	1.01	1138
$^{26}\mathrm{Al}$	2.62E + 8	4.00	0.67	0.000
⁴² K (direct and daughter of ⁴² Ar)	0.51 (1.20E+4)	3.53	1.33(0.24)	11
⁴⁴ Sc (direct and daughter of ⁴⁴ Ti)	0.17(2.16E+4)	3.65	1.19(0.052)	5.34
$^{46}\mathrm{Sc}$	83.79	2.37	1.97	37
$^{56}\mathrm{Co}$	77.2	4.57	0.13	1
$^{58}\mathrm{Co}$	70.9	2.31	1.29	0.000
⁶⁰ Co (direct and daughter of ⁶⁰ Fe)	1925.27 (5.48E+8)	2.82	0.81(0.367)	877
⁶⁸ Ga (direct and daughter of ⁶⁸ Ge)	4.70E-2(271)	2.92	3.14(1.28)	373
⁸² Rb (daughter of ⁸² Sr)	8.75E-4(25.35)	4.40	(2.44)	446
$^{84}\mathrm{Rb}$	32.8	2.69	1.29	18
⁸⁸ Y (direct and daughter of ⁸⁸ Zr)	106.63 (83.4)	3.62	3.14 (8.11)	35750
⁹⁰ Y (direct and daughter of ⁹⁰ Sr)	2.67 (1.05E+4)	2.28	0.69(0.165)	0.000
¹⁰² Rh (direct and daughter of ¹⁰² mRh) ^a	207.3	2.32	11.77(0.03)	0.000
$^{102m}\mathrm{Rh}$	1366.77	2.46	11.77	82
¹⁰⁶ Rh (daughter of ¹⁰⁶ Ru)	3.47E-4 (371.8)	3.54	(0.06)	23
$^{110m}\mathrm{Ag}$	249.83	3.01	[2.39]	3475
110 Ag (daughter of 110m Ag) ^b	2.85E-4	2.89	(0.03)	4
$^{124}\mathrm{Sb}$	60.2	2.90	182.0	177396
^{126m} Sb (direct and daughter of ¹²⁶ Sn)	0.01 (8.40E+7)	3.69	71.42 (7.91)	10
126 Sb (direct and daughter of 126m Sb) c	12.35 (0.01)	3.67	$89.65 \ (^{126m}Sb)$	6888

 $[^]a$ 0.23% from $^{102m}{\rm Rh}$ IT decay.

 $[^]b$ 1.33% from 110m Ag IT decay c 14% from 126m Sb IT decay.

^[1] Nudat website, http://www.nndc.bnl.gov/nudat2/.

^[2] T.W. Armstrong, K.C. Chandler, J. Barish, J. Geophys. Res. 78 (1973) 2715.

^[3] N. Gehrels, Nucl. Instr. and Meth. A 239 (1985) 324.

			•
_	Events Y1		
Isotope	$t_{exp}=1 \text{ yr}$		PF stage 2
		t_{exp} =5h surf	t_{cool} =6 mo. UG
$^{22}\mathrm{Na}$	15309	10.82	0.0947
26 Al	0.048	0.0001	5.724E-7
$^{42}{ m K}$	565	50.76	0.0044
$^{44}\mathrm{Sc}$	102	33.83	0.0004
$^{46}\mathrm{Sc}$	43568	90.27	0.1993
$^{56}\mathrm{Co}$	2629	5.12	0.0099
$^{58}\mathrm{Co}$	25194	52.95	0.0888
$^{60}\mathrm{Co}$	6906	4.23	0.0396
$^{68}\mathrm{Ga}$	37343	76.22	0.2201
$^{82}{ m Rb}$	18047	105.25	0.0071
$^{84}{ m Rb}$	11850	53.68	0.0113
^{88}Y	390620	409.88	2.3079
$^{90}\mathrm{Y}$	823	28.83	0.0019
$^{102}\mathrm{Rh}$	276189	338.49	1.8389
$^{102m}\mathrm{Rh}$	133848	114.51	1.0438
$^{106}\mathrm{Rh}$	1534	1.57	0.0111
$^{110m}\mathrm{Ag}$	69643	69.45	0.4184
$^{110}\mathrm{Ag}$	939	0.94	0.0056
$^{124}\mathrm{Sb}$	3101138	7971.93	9.7353
$^{126m}\mathrm{Sb}$	240	238.24	1.205E-5
$^{126}\mathrm{Sb}$	358996	4271.15	0.0015