# Diblock copolymer bridges: the break-up dynamics and enhanced stability of structured liquids

<u>Robert D. Peters</u> and Kari Dalnoki-Veress McMaster University, Hamilton, Canada





CAP Meeting 2014 - Sudbury, ON

## Newtonian liquid break-up

- Background
- Creating homopolymer and diblock copolymer bridges
- Results
  - Effect of diblock copolymer microstructure on breakup dynamics



(Papageorgiou, Phys. Fluids, (1995)

• Physics of Newtonian liquid jets and bridges: Plateau, Rayleigh, Eggers, Bazilevsky, Renardy, Brenner, Entov, Hinch, Papageorgiou, McKinley, Tripathi, ...

### Non-newtonian liquids



High M<sub>w</sub> polymer solutions

• Shear thickening due to elongational flow.



Clasen, Bico, Entov, McKinley, J. Fluid Mech. (2008)



Sattler, Wagner, Eggers, PRL (2008)

## Symmetric diblock copolymers









Ordered, (Low T)

Disordered, (High T)

### Experimental setup



## Homopolymer bridge evolution



8.8k Polystyrene annealed at  $T = T_g + 35^{\circ}C$ 

## Homopolymer bridge evolution



#### Viscosity calculation



## Shear rates in thinning filaments



#### Temperature dependence



### Homopolymer dynamics



## Symmetric diblock copolymer

 $200 \ \mu m$ 

PS-b-P2VP measurement @ 155 °C, Order-Disorder Transition ~ 160 °C

#### Diblock bridge evolution



#### Homopolymer vs. Diblock



#### Homopolymer vs. Diblock



#### Temperature dependence



## Ordering induced shear thinning



## Ordering induced shear thinning



### Ordering induced shear thinning



### Shear induced disorder



 $\eta > \eta_{\rm dis}$ 

 $\eta = \eta_{\rm dis}$ 

#### Shear induced disorder



# Summary

- Symmetric diblock ordering stabilizes liquid bridges.
- Order of magnitude increase in effective viscosity.
- Shear thinning viscosity due to domain alignment or destruction in shear flows





