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Entanglement is a resource for quantum 
information processing

the beacon laser from the receiver, Bob, is detected by a wide-angle
camera. Using a feedback loop, coarse alignment of the entire optical
system is achieved by a platform rotatable in both azimuth and eleva-
tion (blue arrows in Fig. 1b). Similarly, the fine tracking indicated by
the green arrows is achieved by a fast steering mirror (FSM) driven by
piezo ceramics with the feedback from the four-quadrant detector
(QD). Furthermore, the fine tracking system shares the same optical
path as the quantum channel and is later separated by a dichroic
mirror (DM). A high tracking accuracy can be obtained. The closed-
loop bandwidth of the fine tracking is more than 150 Hz (see
Supplementary Figs 2 and 3 for a detailed description for the APT
system), which is sufficient to overcome most of the atmospheric
turbulence21. Finally, with this system design the tracking accuracy is
better than 3.5mrad over the 97-km free-space link.

There is also coarse and fine tracking on Bob’s side, by means of
closed-loop control of the telescope’s own motor and FSM (Fig. 1d).
Because the main purpose of the tracking at the receiver is to reduce the
low-frequency shaking due to ground settlement and passing vehicles,
the tracking bandwidth is about 10 Hz. The APT system is designed for
tracking an arbitrarily moving object, and can be directly used for a
satellite-based quantum communication experiment. In experiments
between fixed locations, the first two steps, acquiring and pointing, do
not need to be done every day.

After debugging the entire system, the channel loss of the 97-km
horizontal atmospheric transmission at near ground level was
measured to be between 35 and 53 dB, of which 8 dB was due to the
imperfect optics and finite collection efficiency, and 8–12 dB was due

to atmospheric loss. The geometric attenuation caused by the beam
spreading wider than the aperture of the receiver telescope was
between 19 and 33 dB, corresponding to a far-field spot size of between
3.5 and 17.9 m, depending on weather conditions. With a tracking
accuracy of 3.5mrad (a pointing error of 0.34 m at the receiver), we
had stable count rates for single photons. The average channel attenu-
ation was about 44 dB, and the time synchronization accuracy was
better than 1 ns (see Supplementary Fig. 5 for details). Finally, we
obtained 1,171 coincidences during an effective time of 14,400 s. Six
distinct polarization states, namely, jHæ, jVæ, j6æ 5 (jHæ 6 jVæ)/!2,
jRæ 5 (jHæ 1 ijVæ)/!2 and jLæ 5 (jHæ 2 ijVæ)/!2 were teleported. The
experimental fidelities for the six teleported states range from 76% to
89%, all well beyond the classical limit22 of 2/3, with an overall average
fidelity of 80% (Table 1).

In the present teleportation experiment, Alice and Charlie are close
to each other. A more common situation would be that Alice is also far
away from Charlie. In this case, distribution of entanglement between
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Figure 1 | Bird’s-eye view and schematic diagram for free-space quantum
teleportation. a, Satellite image of experiment site. b, Entanglement generation
and distribution on Charlie’s side. Using a pulsed 788-nm laser, an entangled
photon pair (2 and 3) is created by Charlie (see Methods). Photon 2 is sent to
Alice for a Bell-state measurement (BSM), and photon 3 is guided to a refractor
telescope and sent to Bob. Coaxial with the telescope, there is a green laser
(532 nm, 200 mW, 1.5 mrad) for system tracking and a pulsed infrared laser
(1,064 nm, 10 kHz, 50 mW, 200mrad) for synchronization (Supplementary
Information). Lasers are shown as black boxes labelled with emission
wavelength. x and y denote the azimuth and elevation axis of the rotatable
platform for the transmitting telescope. c, Initial state preparation and BSM on

Alice’s side. Under a trigger of photon 4, photon 1 is prepared in the initial state
| xæ. A coincidence between detectors T1 and T2 (R2) or R1 and R2 (T2)
indicates the incident state of | W1æ ( | W2æ). d, Receiving system and
polarization analysis on Bob’s side. The high-power beacon laser (671 nm, 2 W,
200mrad) is used for system tracking. The DM is used to separate the signal
photon (788 nm) from the tracking light (532 nm) and the synchronization
light (1,064 nm), which are then detected by corresponding detectors. The blue
and green arrows on both sides indicate the coarse and fine tracking systems,
respectively. Key at top right defines symbols used for the set-up. Image in a was
obtained by the Chinese environmental satellites, and is used with permission.

Table 1 | Fidelity of quantum teleportation over 97 km
State Fidelity

H 0.814 6 0.031
V 0.886 6 0.024
1 0.773 6 0.031
2 0.781 6 0.031
R 0.808 6 0.026
L 0.760 6 0.027

The data were accumulated for 14,400s. Errors shown are statistical errors, 61 s.d.
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Figure 2 | The phase diagram, structure factors and scaling at the quantum critical point. a, The schematic phase diagram of the kagome Bose–Hubbard
model (2). Insets show the structure factor (Fourier transform of the equal-time density–density correlation function) for V/t = 6 and 8 at high T (� = 3,
top) and low T (V/t = 8 and � = 48, bottom) in the spin-liquid phase. b, Data collapse of the superfluid density, which in the vicinity of a continuous phase
transition should scale as ⇢s(L,V/t,�) = L�1F([V/t�(V/t)c]L1/⌫ ,�/Lz). Here, F is the scaling function, z is the dynamical critical exponent, and ⌫ is the
correlation-length exponent. It follows from the above equation that if we plot ⇢sL as a function of [V/t�(V/t)c]L1/⌫ at fixed �/Lz then the curves for
different system sizes should collapse onto the universal curve F for appropriate values of ⌫ and (V/t)c, as shown for ⌫ = 0.6717, (V/t)c = 7.0665,
and �/L = 2.

Naively, because calculating � requires complete knowledge
of the ground-state wavefunction (through ⇢A), previous efforts
to calculate it have been restricted to models that can be solved
exactly either analytically (for example the toric code) or through
numerical exact diagonalization on small size systems (for example
the triangular lattice dimer model16). The ability to use � as a
general tool to search for and characterize non-trivial topologically
ordered phases has been hindered by the inability to access the
wavefunction in large-scale numerical methods, namely QMC,
currently the only scalable quantum simulation method in 2D and
higher. However, with the recent introduction of measurement
methods based on the ‘replica trick’, QMC is now able to access
Sn(A) for n� 2 (ref. 17), therefore giving one a method to calculate
� in large-scale simulations of quantum spin liquids.

Using stochastic-series-expansion QMC (refs 18,19), we sim-
ulate a hard-core Bose–Hubbard model on the kagome lattice,
with nearest-neighbour hopping and a six-site potential around
each lattice hexagon,

H = �t
X

hiji
[b†

i bj +bib
†
j ]+V

X

7
(n7)2 (2)

where b†
i (bi) is the boson creation (annihilation) operator, and

n7 = P
i27(ni �1/2), where ni = b†

i bi is the number operator. As
mentioned above, variations of this model with more complicated
spin interactions are known to harbour a robust spin-liquid ground
state8–10. In this paper, we consider the simplified Hamiltonian
(equation (2)), with only nearest-neighbour hopping, which may
be more amenable to construction for example in real cold atomic
systems. We observe a transition at low temperature between a
superfluid phase and an insulating phase for (V /t )c ⇡ 7.0665(15)
(Fig. 2). For V /t > (V /t )c the superfluid density scales to zero,
and density and bond correlators are featureless (similar to the case
discussed in ref. 9). This strongly suggests that the insulating phase
is a spin liquid. To characterize it, we calculate the topological EE,
equation (1) with n = 2, which for a Z2 topological phase should
approach 2ln(2) in the limit T ! 0 (ref. 13). The regions Ai are
shown in Fig. 1 for an L= 8 system; these are scaled proportionally
for the other system sizes studied in this paper, where L is always
a multiple of 8. Results for � as a function of inverse temperature
� = t/T are shown in Fig. 3 for severalV /t .

In the topological phase (V /t = 8) we see two distinct plateaux,
at differing temperatures, with a non-zero topological EE as T ! 0.
The phenomenon is known to occur in other models, such as

the toric code20, where the topological EE at zero temperature
of 2 ln(2) can be viewed as a sum of electric and magnetic
contributions, each contributing ln(2). If the electric and magnetic
defects have different energies, theory predicts two distinct plateaux
corresponding to these individual crossover temperatures20, as
seen in our data. However, at any fixed non-zero temperature,
in the limit of large L, the topological EE vanishes, as the
probability of having thermally excited defects in the annulus A1
(Fig. 1) tends to unity. Indeed, under the assumption that the
probability of having a defect is proportional to L2 exp(�E/kBT ),
where E is the defect energy, the temperature required to see
accurate plateaux in the topological EE scales logarithmically
with L. In Fig. 3, we show finite-size scaling data consistent with
this logarithmic scaling.

Our value for the topological EE at the higher-T plateau is
indeed very close to ln(2), becoming more accurately quantized at
larger system sizes (Fig. 3b). The value of 2ln(2) at the lower-T
plateau is not as accurately quantized for L= 8, owing to finite size
effects. However, for Z2 (and many other) topological theories, the
high-T plateau is sufficient to fully characterize the emergent gauge
symmetry. Namely, the set of low-energy quasi-particles (either
electric or magnetic particles in the Z2 case) closes under fusion,
and the difference between the upper and lower plateaux equals the
logarithm of the total quantum dimension of this set. Therefore,
the Z2 result can be generalized for other discrete gauge theories,
where the high-T plateau is always half of the low-T plateau (note
for non-Abelian theories this requires that the low energy particles
be electric). Indeed, we observe a high-T plateau consistent with
this result, confirming to high accuracy that our spin liquid has an
emergent discrete Z2 gauge symmetry.

In the superfluid phase, the topological EE tends to zero asT !0
(Fig. 3). However, surprisingly, for V /t = 6 we observe a plateau
in the topological EE at intermediate temperatures, T ⇠ t . This
behaviour should occur near other transitions out of topological
phases. To understand the physics and illustrate the ubiquity of this
effect, we consider the same phenomenon in the toric code induced
by adding a parallel magnetic field. Consider a square-lattice toric-
code Hamiltonian H = �U

P
+
Q

i2+S
z
i � g

P
2
Q

i22Sxi �h
P

i S
z
i ,

where the first vertex term penalizes vertices that do not have an
even number of up spins on the legs of the neighbouring bonds, and
the second sum is over plaquettes. Suppose U � g . By increasing
h/g , we induce a T = 0 phase transition from a topological phase to
a trivial phase. In a non-zero temperature regimewhereU �T �g ,
the problem becomes classical: the quantum dynamics induced by

NATURE PHYSICS | VOL 7 | OCTOBER 2011 | www.nature.com/naturephysics 773

S =

c

3

log

✓
L

⇡a
sin

⇡`

L

◆
+ c1

S(A) = `� �

2d topological spin liquid

(1+1) conformal field theory



Entanglement in quantum fluids and gases

.Estève, et al.,  
Nature 455, 1216 (2008)

Theoretical work has focused on systems with discrete 
Hilbert spaces: qubits, insulating lattice models, …

Experiments employ the quantum states of ultra-cold 
atomic gasses and BECs

LETTERS

Squeezing and entanglement in a Bose–Einstein
condensate
J. Estève1, C. Gross1, A. Weller1, S. Giovanazzi1 & M. K. Oberthaler1

Entanglement, a key feature of quantum mechanics, is a resource
that allows the improvement of precision measurements beyond
the conventional bound attainable by classical means1. This results
in the standard quantum limit, which is reached in today’s best
available sensors of various quantities such as time2 and posi-
tion3,4. Many of these sensors are interferometers in which the
standard quantum limit can be overcome by using quantum-
entangled states (in particular spin squeezed states5,6) at the two
input ports. Bose–Einstein condensates of ultracold atoms are
considered good candidates to provide such states involving a
large number of particles. Here we demonstrate spin squeezed
states suitable for atomic interferometry by splitting a condensate
into a few parts using a lattice potential. Site-resolved detection of
the atoms allows the measurement of the atom number difference
and relative phase, which are conjugate variables. The observed
fluctuations imply entanglement between the particles7–9, a
resource that would allow a precision gain of 3.8 dB over the stan-
dard quantum limit for interferometric measurements.
Spin squeezing was one of the first quantum strategies proposed to
overcome the standard quantum limit, in a precision measurement5,6

that triggered many experiments10–17. It applies to measurements
where the final readout is done by counting the occupancy difference

between two quantum states, as in interferometry or in spectroscopy.
The name ‘spin squeezing’ originates from the fact that the N part-
icles used in the measurement can be described by a fictitious spin
J 5 N/2. In an interferometric sequence, the spin undergoes a series
of rotations in which one of the rotation angles is the phase shift to be
measured. A sufficient criterion for the input state, allowing for
quantum-enhanced metrology, is given by jS , 1, where
j2

S~2JDJ 2
z =(hJxi2zhJyi2) is the squeezing parameter introduced in

ref. 6. The fluctuations of the spin in one direction have to be reduced
below shot noise (here DJ 2

z vJ=2), and the spin polarization in the
orthogonal plane, ÆJxæ2 1 ÆJyæ2, has to be large enough to maintain the
sensitivity of the interferometer. A pictorial representation of this
condition is shown in Fig. 1b. The precision of such a quantum-
enhanced measurement is jS=

ffiffiffiffi
N
p

, whereas the standard quantum
limit set by shot noise is 1=

ffiffiffiffi
N
p

.
In this Letter, we report the observation of entangled squeezed

states in a Bose–Einstein condensate of 87Rb atoms. The particles
are distributed over a small number of lattice sites (between two
and six) in a one-dimensional optical lattice (Fig. 1a). The occu-
pation number per site ranges from 100 to 1,100 atoms. The two
modes supporting the squeezing are two states of the external atomic
motion corresponding to the condensate mean-field wavefunctions

1Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
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Figure 1 | Observing spin squeezing in a Bose–Einstein condensate
confined in a double- or six-well trap. a, The atoms are trapped in an optical
lattice potential superimposed on an harmonic dipole trap. The number of
occupied sites is adjusted by changing the confinement in the lattice
direction. High-resolution imaging allows us to resolve each site. b, Gain in
quantum metrology is obtained for spin squeezed states exhibiting reduced
fluctuations in one direction (z) and a sufficiently large polarization in the
orthogonal plane (x, y) as depicted on the Bloch sphere. For our system, spin
fluctuations in the z direction translate to atom number difference
fluctuations Dn between two adjacent wells. The polarization of the spin in

the x–y plane is proportional to the phase coherence, Æcos wæ, between the
wells. c, The atom number fluctuations at each site are measured by
integrating the atomic density obtained from absorption images. We
compare a typical histogram showing sub-Poissonian fluctuations in the
atom number difference with the binomial distribution (red curve). The
green curve corresponds to the deduced distribution after subtracting the
photon shot noise, leading to a number squeezing factor of j2

N 5 26.6 dB.
d, The phase coherence is inferred from the interference patterns between
adjacent wells. The histogram shown corresponds to a phase coherence of
Æcos wæ 5 0.9.
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Detecting Multiparticle Entanglement of Dicke States
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Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their
spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a
measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled
states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a
Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement.
We infer a generalized squeezing parameter of −11:4ð5Þ dB.

DOI: 10.1103/PhysRevLett.112.155304 PACS numbers: 67.85.−d, 03.67.Bg, 03.67.Mn, 03.75.Mn

Entanglement, one of the most intriguing features of
quantummechanics, is nowadays a key ingredient for many
applications in quantum information science [1,2], quan-
tum simulation [3,4], and quantum-enhanced metrology
[5]. Entangled states with a large number of particles
cannot be characterized via full state tomography [6],
which is routinely used in the case of photons [7,8],
trapped ions [9], or superconducting circuits [10,11].
A reconstruction of the full density matrix is hindered
and finally prevented by the exponential increase of the
required number of measurements. Furthermore, it is
technically impossible to address all individual particles
or even fundamentally forbidden if the particles occupy the
same quantum state. Therefore, the entanglement of many-
particle states is best characterized by measuring the
expectation values and variances of the components of
the collective spin J ¼ ðJx; Jy; JzÞT ¼

P
isi, the sum of all

individual spins si in the ensemble.
In particular, the spin-squeezing parameter ξ2 ¼

NðΔJzÞ2=ðhJxi2 þ hJyi2Þ defines the class of spin-
squeezed states for ξ2 < 1. This inequality can be used
to verify the presence of entanglement, since all spin-
squeezed states are entangled [12]. Large clouds of
entangled neutral atoms are typically prepared in such
spin-squeezed states, as shown in thermal gas cells [13],
at ultracold temperatures [14–16], and in Bose-Einstein
condensates [17–19].
Systems with multiple particles may exhibit more than

pairwise entanglement. Multiparticle entanglement is best

quantified by means of the so-called entanglement depth,
defined as the number of particles in the largest nonseparable
subset [see Fig. 1(a)]. There have been numerous experi-
ments detecting multiparticle entanglement involving up to
14 qubits in systems, where the particles can be addressed
individually [9,20–24]. Large ensembles of neutral atoms
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FIG. 1 (color online). Measurement of the entanglement depth
for a total number of 8000 atoms. (a) The entanglement depth is
given by the number of atoms in the largest nonseparable subset
(shaded areas). (b) The spins of the individual atoms add up to the
total spin J whose possible orientations can be depicted on
the Bloch sphere. Dicke states are represented by a ring around
the equator with an ultralow width ΔJz and a large radius Jeff .
(c) The entanglement depth in the vicinity of a Dicke state can be
inferred from a measurement of these values. The red lines
indicate the boundaries for various entanglement depths. The
experimental result is shown as blue uncertainty ellipses with 1
and 2 standard deviations, proving an entanglement depth larger
than 28 (dashed line).
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Can we quantify and optimize 
the entanglement of 
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spatial continuum?



Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications in 1d 
interacting bosons and the connection between 
entanglement and condensate fraction
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Study systems of quantum fluids and gasses
governed by the general many-body Hamiltonian
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+
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Vij ,

interaction 
potential

external 
potential

trapped ions with a periodic 
lattice potential
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compute the reduced density matrix 
by tracing over region B

Quantifying bipartite entanglement
bipartition into two subsystems: A & B

B

A

| i ?
= | Ai ⌦ | Bi

⇢A = Tr
B

⇢
⇢ ⌘ | ih |

Rényi Entanglement Entropy:

S↵(⇢A) =
1

1� ↵
log Tr ⇢↵A

reduces to von Neumann entropy when ↵ ! 1 S = Tr ⇢A log ⇢A



Different bipartitions of itinerant bosons
for identical particles in the spatial continuum, various  
ways to partition ground state

Spatial Bipartition 
Constructed from the Fock space of  
single-particle modes

⇢A ! S(A)

| i =
X
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Different bipartitions of itinerant bosons
for identical particles in the spatial continuum, various  
ways to partition ground state

Spatial Bipartition 
Constructed from the Fock space of  
single-particle modes

⇢A ! S(A)

Particle Bipartition 
Artificially label a subset of n particles

| i = |r1 · · · rN i

⇢n =

Z
drn · · · drN h |⇢̂| i

⇢n ! S(n)n-body density matrix

| i =
X

nA,nB

cnAnB

���nA

E
⌦
���nB

E



Example: entanglement in the free Bose gas

Spatial Bipartition 
entanglement is non-zero and is generated via number fluctuations

|BECi ⌘ 1p
N !

⇣
�†
0

⌘N
|0i

C. Simon, PRA 66, 052323 (2002) 
W. Ding and K. Yang, PRA 80, 012329 (2009)

S2(A) ⇠ 1

2

log `A

Particle Bipartition 
Ground state is already in product-form in first quantized notation

S2(n) = 0



How do interactions change this picture?
“toy” quantum fluid:  1d Bose-Hubbard model

HBH =
X

j


�t

⇣
b†jbj+1 + h.c.

⌘
+

U

2
nj (nj + 1)� µjnj

�

|BECi ⌘ 1p
N !

⇣
�†
0

⌘N
|0i

3 types of candidate ground states

��
Mott

↵
⌘

Y

j

b†j
��0
↵

��Cat
↵
⌘

X

j

1p
L
p
N !

⇣
b†j

⌘N ��0
↵

State Particle 
Entanglement

Spatial 
Entanglement

BEC 0 1/2 log L

Mott L log 2 0

Cat log L log 2

E. Haller et al., Nature 466, 597 (2010)



Can any of this entanglement be put to use?

Particle Entanglement 
inaccessible due to the indistinguishability of particles  

Spatial Entanglement 
particle number conservation prohibits direct measurement

Accessing entanglement as a resource requires the ability 
to perform local physical operations on subsystems



Can any of this entanglement be put to use?

Particle Entanglement 
inaccessible due to the indistinguishability of particles  

Spatial Entanglement 
particle number conservation prohibits direct measurement

Accessing entanglement as a resource requires the ability 
to perform local physical operations on subsystems

H. M. Wiseman and J. A. Vaccaro, PRL 91, 097902 (2003)

Ep(A) < S(A)

Ep(A) > 0 ) S(n) > 0

The Entanglement of Particles
Ep (A) ⌘

X

n

PnS (⇢A,n)

⇢A,n ⌘ 1

Pn
P̂n⇢AP̂n

probability
projection 
operator



Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications in 1d 
interacting bosons and the connection between 
entanglement and condensate fraction
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Path integral ground state quantum Monte Carlo

H =
NX

i=1

✓
� ~2
2mi

r2
i + Ui

◆
+
X

i<j

Vij ,

Description

Project  
a trial wave function onto the ground state

�� 
↵
= lim

�!1
e��H

�� T

↵

��
�
�
��
�
��
�	
��




���



D. M. Ceperley, RMP 67, 279 (1995) 
A. Sarsa, et. al., J. Chem. Phys. 113, 1366 (2000)

Configurations 
discrete imaginary time worldlines constructed 
from products of the short time propagator 

⇢⌧ (R,R0) = hR|e�⌧H |R0i

Observables 
an exact method for computing  
ground state expectation values 

⌦Ô↵
= lim

�!1

⌦
 T

��e��HÔe��H
�� T

↵
⌦
 T

��e�2�H
�� T

↵



Computing Rényi entropies in Monte Carlo
Replicate the system
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Computing Rényi entropies in Monte Carlo
Replicate the system

⌦
B1 B2

A1 A2

Permute (swap) the subregions

⌦
B1 B2

A2 A1

⇧A

P. Calabrese and J. Cardy, J. Stat. Mech.: Theor. Exp. 2004, P06002 (2004) 
M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, PRL 104, 157201 (2010) 
R. Melko, A. Kallin, and M. Hastings, PRB 82, 100409 (2010)

Technology imported from QFT to QMC

For α = 2 replicas, expectation value of the permutation operator is a  
measure of the 2nd Rényi entropy.

S2 = � logh⇧Ai



Porting to the path integral representation
Break continuous space paths at the center time slice β

A B



Porting to the path integral representation
Break continuous space paths at the center time slice β

A B

C. Herdman et al. Phys. Rev. B, 89, 140501 (2014)

The bipartitions only exist at this time slice.  
Broken links are in A.
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Benchmarking on a non-trivial model
N-Harmonium in 1d 
harmonically interacting and confined bosons

C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, arXiv:1404.4447v1, (2014)

H =
NX

i=1

2

4� ~2
2m

d2

dx2
i

+
1

2
m!2

0x
2
i +

1

2
m!2

int

X

j>i

(xi � xj)
2

3

5

exact solution can be computed using Wigner quasi-distributions for bosons or 
fermions
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2
i +

1

2
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int

X
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(xi � xj)
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exact solution can be computed using Wigner quasi-distributions for bosons or 
fermions

QMC Results: Particle Entanglement

interaction strength system size

C. M. Herdman et al. arXiv:1404.7104 



Benchmarking on a non-trivial model
Spatial Entanglement

bipartition size

B1 A1 B1

B2 A2

C. M. Herdman et al. arXiv:1404.7104 



Benchmarking on a non-trivial model
Spatial Entanglement

bipartition size

B1 A1 B1

B2 A2

B1

interaction strength

Entanglement of Particles

B1 A1

The useful entanglement is  
zero for non-interacting particles 
and peaks at some value of ωint

C. M. Herdman et al. arXiv:1404.7104 



Quantifying Entanglement 
bipartite Rényi entropies in the spatial continuum

Algorithmic Development 
measurement and benchmarking using path 
integral quantum Monte Carlo

Applications to 1d bosons 
interactions and the connection between 
entanglement and condensate fraction
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Moving towards a physically realizable system

E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

one dimensional short-range interacting bosons

H =
NX

i=1

2

4� ~2
2m

d2

dx2
i

+
2cp
2⇡�2

X

j>i

e�|xi�xj |2/2�2

3

5

as σ→0 we recover the Lieb-Liniger model of delta-
function interacting bosons.
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one dimensional short-range interacting bosons

H =
NX

i=1

2

4� ~2
2m

d2

dx2
i

+
2cp
2⇡�2

X

j>i

e�|xi�xj |2/2�2

3

5

as σ→0 we recover the Lieb-Liniger model of delta-
function interacting bosons.

In the low energy limit, the system can be described via 
Luttinger liquid theory 
1. no phase transitions as a function of interaction strength 
2. algebraic decay of all correlation functions

B. Paredes, et al., Nature 429, 277 (2004) 
T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004)Tonks-Girardeau gas:



Single particle entanglement is related to the 
condensate fraction!

the fractional population of the zero-momentum state is 
experimentally accessible via the momentum distribution

S. Trotzky, et al., Nat. Phys. 6, 998 (2010)

QMC

experiment

n0 is the largest eigenvalue of the one-body density matrix 

determines the “single-copy” entropy:  
fixes the binary (qubit) entropy:

S1 = � log n0

SQB = � log

⇥
n2
0 + (1� n0)

2
⇤

S∞ & SQB can be used to bound S2(n = 1)



Bounding entanglement of interacting bosons
S1  SQB  S2(n = 1)  2S1 (n0  1/2)

SQB  S1  S2(n = 1)  2S1 (n0 > 1/2)



Bounding entanglement of interacting bosons
S1  SQB  S2(n = 1)  2S1 (n0  1/2)

SQB  S1  S2(n = 1)  2S1 (n0 > 1/2)

N = 8

bounds  
from n0

C.M. Herdman et al. PRB, 89, 140501 (2014)

QMC



Finite size scaling and universality

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)

Canonical Form 
A universal canonical scaling function for particle entanglement entropy

S(n,N ; a, b) = an logN + b

C.M. Herdman et al. PRB, 89, 140501 (2014)

Tonks-Girardeau 
limit

nearly perfect data 
collapse to log  
scaling for N > 8



Can now quantify entanglement in 
itinerant boson systems in the 
spatial continuum 

Experimental measurement & optimization 
Bound entanglement via the condensate fraction and learn how to optimize 
the functional entanglement that can be transferred to a register for 
quantum information processing.

Applications to low dimensional quantum field theory 
Scaling pre-factor of the one-particle entanglement is related to the 
Luttinger parameter of the effective field theory.



Computing resources and partners in research


