# ENTANGLEMENT ENTROPY IN QUANTUM FLUIDS & GASES

Measuring quantum correlations in the spatial continuum



Chris Herdman



Stephen Inglis U Waterloo / LMU



P.N. Roy U Waterloo



Roger Melko U Waterloo

Phys. Rev. B, 89, 140501 (2014) arXiv:1404.7104

2014 CAP Congress

Adrian Del Maestro University of Vermont



# Entanglement is a resource for quantum information processing

# necessary to provide an exponential speed-up over classical computation

R. Jozsa and N. Linden, Proc. Roy. Soc. A: Math, Phys. and Eng. 459, 2011 (2003)

$$O\left(e^{1.9(\log N)^{1/3}}(\log\log N)^{2/3}\right) \to O\left((\log N)^3\right)$$





L. M. K. Vandersypen, et. al., Nature 414, 883 (2001)

#### teleportation



C.H.Bennett, et al. Phys. Rev. Lett. 70, 1895 (1993)



J. Yin et al., Nature 488, 185 (2012)

# Detection and classification of quantum states of matter



area law

entanglement scales with the boundary size

$$S(A) \sim \ell^{d-1}$$

L. Amico, A. Osterloh, and V. Vedral, RMP 80, 517 (2008) J. Eisert, M. Cramer, and M. B. Plenio, RMP 82, 277 (2010)

# Detection and classification of quantum states of matter



#### area law

# entanglement scales with the boundary size

$$S(A) \sim \ell^{d-1}$$

L. Amico, A. Osterloh, and V. Vedral, RMP 80, 517 (2008) J. Eisert, M. Cramer, and M. B. Plenio, RMP 82, 277 (2010)



#### 2d topological spin liquid

$$S(A) = \ell - \gamma$$

#### (1+1) conformal field theory

$$S = \frac{c}{3} \log \left( \frac{L}{\pi a} \sin \frac{\pi \ell}{L} \right) + c_1$$

S. V. Isakov, *et al.*, Nat Phys 7, 772 (2011) A. Kitaev and J. Preskill, PRL 96, 110404 (2006) M. Levin and X.-G. Wen, PRL 96, 110405 (2006) M. M. Wolf *et al.* PRL 100, 070502 (2008).

## Entanglement in quantum fluids and gases

Theoretical work has focused on systems with discrete Hilbert spaces: qubits, insulating lattice models, ...

# Experiments employ the quantum states of ultra-cold atomic gasses and BECs

# observation and manipulation of Dicke states



B. Lücke, et.al., PRL 112, 155304 (2014)

# $\frac{1}{\sqrt{2}}\sqrt{2}\sqrt{2}$ $\frac{\sqrt{2}}{\sqrt{2}}\sqrt{2}\sqrt{2}$ $\frac{\sqrt{2}}{\sqrt{2}}\sqrt{2}\sqrt{2}$

ultra high-precision quantum interferometry

.Estève, *et al.*, Nature 455, 1216 (2008) multiparticle entanglement of trapped ions



T. Monz, et.al., PRL 102, 040501 (2009)

#### boson sampling

C. Shen, et al., PRL 112, 050504 (2014)





# Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

# Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction



# Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

# Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction



# Study systems of quantum fluids and gasses

governed by the general many-body Hamiltonian

$$H = \sum_{i=1}^{N} \left( -\frac{\hbar^2}{2m_i} \nabla_i^2 + U_i \right) + \sum_{i < j} V_{ij},$$

external potential

interaction potential



# trapped ions with a periodic lattice potential

J. Wernsdorfer et al. PRA, 81, 043620 (2010)



#### quantum nanofluids of helium-4

B. Kulchytskyy et al. PRB, 88, 064512 (2013)

# Quantifying bipartite entanglement

bipartition into two subsystems: A & B

compute the reduced density matrix by tracing over region B

$$\rho_A = \operatorname{Tr} \rho$$

$$\rho \equiv |\Psi\rangle\langle\Psi|$$



#### Rényi Entanglement Entropy:

$$S_{\alpha}(\rho_A) = \frac{1}{1 - \alpha} \log \operatorname{Tr} \rho_A^{\alpha}$$

$$|\Psi\rangle \stackrel{?}{=} |\Psi_A\rangle \otimes |\Psi_B\rangle$$

#### Different bipartitions of itinerant bosons

for identical particles in the spatial continuum, various ways to partition ground state

#### **Spatial Bipartition**

Constructed from the Fock space of single-particle modes

$$|\Psi\rangle = \sum_{\boldsymbol{n}_A, \boldsymbol{n}_B} c_{\boldsymbol{n}_A \boldsymbol{n}_B} |\boldsymbol{n}_A\rangle \otimes |\boldsymbol{n}_B\rangle$$

$$\rho_A \to S(A)$$



#### Different bipartitions of itinerant bosons

for identical particles in the spatial continuum, various ways to partition ground state

#### **Spatial Bipartition**

Constructed from the Fock space of single-particle modes

$$|\Psi\rangle = \sum_{\boldsymbol{n}_A, \boldsymbol{n}_B} c_{\boldsymbol{n}_A \boldsymbol{n}_B} \left| \boldsymbol{n}_A \right\rangle \otimes \left| \boldsymbol{n}_B \right\rangle \ 
ho_A o S(A)$$



#### Particle Bipartition

Artificially label a subset of n particles

$$|\Psi
angle=|m{r}_1\cdotsm{r}_N
angle$$
  $ho_n=\int dm{r}_n\cdots dm{r}_N\langle\Psi|\hat{
ho}|\Psi
angle$   $ho_n o S(n)$ n-body density matrix



#### Example: entanglement in the free Bose gas





$$|\mathrm{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} \left(\phi_0^{\dagger}\right)^N |\mathbf{0}\rangle$$

#### **Spatial Bipartition**

entanglement is non-zero and is generated via number fluctuations

$$S_2(A) \sim \frac{1}{2} \log \ell_A$$

#### **Particle Bipartition**

Ground state is already in product-form in first quantized notation

$$S_2(n) = 0$$

C. Simon, PRA 66, 052323 (2002)W. Ding and K. Yang, PRA 80, 012329 (2009)

## How do interactions change this picture?

"toy" quantum fluid: 1d Bose-Hubbard model

$$H_{\text{BH}} = \sum_{i} \left[ -t \left( b_{j}^{\dagger} b_{j+1} + \text{h.c.} \right) + \frac{U}{2} n_{j} \left( n_{j} + 1 \right) - \mu_{j} n_{j} \right]$$



E. Haller *et al.*, Nature 466, 597 (2010)

#### 3 types of candidate ground states

| $ \mathrm{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} \left(\phi_0^{\dagger}\right)^N  0\rangle$                                                     | State | Particle<br>Entanglement | Spatial<br>Entanglement |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|-------------------------|
| $ 	ext{Mott} angle \equiv \prod b_j^\dagger  0 angle$                                                                                           | BEC   | 0                        | $1/2 \log L$            |
| $\vec{j}$                                                                                                                                       |       | $L \log 2$               | 0                       |
| $\left  \operatorname{Cat} \right\rangle \equiv \sum_{j} \frac{1}{\sqrt{L}\sqrt{N!}} \left( b_{j}^{\dagger} \right)^{N} \left  0 \right\rangle$ | Cat   | $\log L$                 | log 2                   |

#### Can any of this entanglement be put to use?

Accessing entanglement as a resource requires the ability to perform local physical operations on subsystems

#### Spatial Entanglement

particle number conservation prohibits direct measurement

#### Particle Entanglement

inaccessible due to the indistinguishability of particles



## Can any of this entanglement be put to use?

Accessing entanglement as a resource requires the ability to perform local physical operations on subsystems

#### Spatial Entanglement

particle number conservation prohibits direct measurement

#### Particle Entanglement

inaccessible due to the indistinguishability of particles



# The Entanglement of Particles

$$E_{p}\left(A
ight) \equiv \sum_{n} P_{n}S\left(
ho_{A,n}
ight)$$
  $ho_{A,n} \equiv \frac{1}{P_{n}}\hat{P}_{n}
ho_{A}\hat{P}_{n}$  projection operator



$$E_p(A) > 0 \Rightarrow S(n) > 0$$

H. M. Wiseman and J. A. Vaccaro, PRL 91, 097902 (2003)

# Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

# Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction



# Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

# Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction



#### Path integral ground state quantum Monte Carlo

#### **Description**

$$H = \sum_{i=1}^{N} \left( -\frac{\hbar^2}{2m_i} \nabla_i^2 + U_i \right) + \sum_{i < j} V_{ij},$$

#### **Project**

a trial wave function onto the ground state

$$|\Psi\rangle = \lim_{\beta \to \infty} e^{-\beta H} |\Psi_T\rangle$$



#### **Configurations**

discrete imaginary time worldlines constructed from products of the short time propagator

$$\rho_{\tau}(\boldsymbol{R}, \boldsymbol{R'}) = \langle \boldsymbol{R} | e^{-\tau H} | \boldsymbol{R'} \rangle$$

#### **Observables**

an exact method for computing ground state expectation values

$$\langle \hat{\mathcal{O}} \rangle = \lim_{\beta \to \infty} \frac{\langle \Psi_{\mathrm{T}} | e^{-\beta H} \hat{\mathcal{O}} e^{-\beta H} | \Psi_{\mathrm{T}} \rangle}{\langle \Psi_{\mathrm{T}} | e^{-2\beta H} | \Psi_{\mathrm{T}} \rangle}$$

D. M. Ceperley, RMP 67, 279 (1995) A. Sarsa, *et. al.*, J. Chem. Phys. 113, 1366 (2000)

#### Computing Rényi entropies in Monte Carlo

#### Replicate the system



#### Computing Rényi entropies in Monte Carlo

Replicate the system

Permute (swap) the subregions



## Computing Rényi entropies in Monte Carlo

Replicate the system

#### Permute (swap) the subregions



#### Technology imported from QFT to QMC

P. Calabrese and J. Cardy, J. Stat. Mech.: Theor. Exp. 2004, P06002 (2004) M. B. Hastings, I. González, A. B. Kallin, and R. G. Melko, PRL 104, 157201 (2010) R. Melko, A. Kallin, and M. Hastings, PRB 82, 100409 (2010)

For  $\alpha = 2$  replicas, expectation value of the permutation operator is a measure of the 2nd Rényi entropy.

$$S_2 = -\log\langle \Pi_A \rangle$$

#### Porting to the path integral representation

Break continuous space paths at the center time slice  $\beta$ 



## Porting to the path integral representation

#### Break continuous space paths at the center time slice $\beta$



The bipartitions only exist at this time slice. Broken links are in A.



$$\left\langle \Pi_{2}^{A} \right\rangle \sim \left\langle \rho_{\tau}^{A} \left( \boldsymbol{R}^{\beta} \otimes \tilde{\boldsymbol{R}}^{\beta}; \Pi_{2}^{A} \left[ \boldsymbol{R}^{\beta+\tau} \otimes \tilde{\boldsymbol{R}}^{\beta+\tau} \right] \right) \right\rangle$$



#### N-Harmonium in 1d

harmonically interacting and confined bosons

$$H = \sum_{i=1}^{N} \left[ -\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{1}{2} m\omega_0^2 x_i^2 + \frac{1}{2} m\omega_{\text{int}}^2 \sum_{j>i} (x_i - x_j)^2 \right]$$

exact solution can be computed using Wigner quasi-distributions for bosons or fermions C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, arXiv:1404.4447v1, (2014)

#### N-Harmonium in 1d

harmonically interacting and confined bosons

$$H = \sum_{i=1}^{N} \left[ -\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{1}{2} m \omega_0^2 x_i^2 + \frac{1}{2} m \omega_{\text{int}}^2 \sum_{j>i} (x_i - x_j)^2 \right]$$

exact solution can be computed using Wigner quasi-distributions for bosons or fermions C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, arXiv:1404.4447v1, (2014)

#### QMC Results: Particle Entanglement

C. M. Herdman et al. arXiv:1404.7104





#### Spatial Entanglement



#### Spatial Entanglement



#### **Entanglement of Particles**



The useful entanglement is zero for non-interacting particles and peaks at some value of  $\omega_{\rm int}$ 

# Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

# Applications to 1d bosons

interactions and the connection between entanglement and condensate fraction



## Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum





# Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

## Applications to 1d bosons

interactions and the connection between entanglement and condensate fraction



#### Moving towards a physically realizable system

one dimensional short-range interacting bosons

$$H = \sum_{i=1}^{N} \left[ -\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{2c}{\sqrt{2\pi\sigma^2}} \sum_{j>i} e^{-|x_i - x_j|^2/2\sigma^2} \right]$$



as  $\sigma$ →0 we recover the Lieb-Liniger model of deltafunction interacting bosons. E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

# Moving towards a physically realizable system

one dimensional short-range interacting bosons

$$H = \sum_{i=1}^{N} \left[ -\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{2c}{\sqrt{2\pi\sigma^2}} \sum_{j>i} e^{-|x_i - x_j|^2 / 2\sigma^2} \right]$$



as  $\sigma \rightarrow 0$  we recover the Lieb-Liniger model of deltafunction interacting bosons. E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

#### In the low energy limit, the system can be described via Luttinger liquid theory

- no phase transitions as a function of interaction strength
- algebraic decay of all correlation functions

# Single particle entanglement is related to the condensate fraction!

the fractional population of the zero-momentum state is experimentally accessible via the momentum distribution



QMC

experiment

S. Trotzky, et al., Nat. Phys. 6, 998 (2010)

- ullet  $n_0$  is the largest eigenvalue of the one-body density matrix
- determines the "single-copy" entropy:  $S_{\infty} = -\log n_0$
- fixes the binary (qubit) entropy:  $S_{\mathrm{QB}} = -\log\left[n_0^2 + (1-n_0)^2\right]$

 $S_{\infty}$  &  $S_{\mathrm{QB}}$  can be used to bound  $S_{2}(n=1)$ 

# Bounding entanglement of interacting bosons

$$S_{\infty} \le S_{\text{QB}} \le S_2(n=1) \le 2S_{\infty}$$
  $(n_0 \le 1/2)$   
 $S_{\text{QB}} \le S_{\infty} \le S_2(n=1) \le 2S_{\infty}$   $(n_0 > 1/2)$ 

## Bounding entanglement of interacting bosons

$$S_{\infty} \le S_{\text{QB}} \le S_2(n=1) \le 2S_{\infty}$$
  $(n_0 \le 1/2)$   
 $S_{\text{QB}} \le S_{\infty} \le S_2(n=1) \le 2S_{\infty}$   $(n_0 > 1/2)$ 



#### Finite size scaling and universality

#### Canonical Form

A universal canonical scaling function for particle entanglement entropy

$$S(n, N; a, b) = an \log N + b$$

O. Zozulya, M. Haque, and K. Schoutens, PRA 78, 042326 (2008)



Tonks-Girardeau limit

nearly perfect data collapse to log scaling for N > 8

C.M. Herdman et al. PRB, 89, 140501 (2014)

# Can now quantify entanglement in itinerant boson systems in the spatial continuum

#### Experimental measurement & optimization

Bound entanglement via the condensate fraction and learn how to optimize the functional entanglement that can be transferred to a register for quantum information processing.

#### Applications to low dimensional quantum field theory

Scaling pre-factor of the one-particle entanglement is related to the Luttinger parameter of the effective field theory.

#### Computing resources and partners in research











Extreme Science and Engineering Discovery Environment