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OUTLINE
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Key reference: S. Coleman, PRD15
2929 (1977)
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QUICK REVIEW OF VACUUM DECAY

—V(9)
To compute the decay rate:

1. Euclideanize. /g;Ml

1

Lr=5(0u0)" +V(9)

10



QUICK REVIEW OF VACUUM DECAY

—V(9)
To compute the decay rate:

2. Solve equation of motion

1. Euclideanize. /QZO\/gbl

with boundary conditions:
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QUICK REVIEW OF VACUUM DECAY

—V(9)
To compute the decay rate:

2. Solve equation of motion

1. Euclideanize. /Q;O\/gbl

with boundary conditions:

o¢

OT 7

Q@ — Qg as r, T — OO,

7=0

3. The lowest-action nontrivial solution @,
determines the decay rate:

TV = Ae—SE[®6]/N
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QUICK REVIEW OF VACUUM DECAY

—V(9)
Bounce (O(4)-symmetric)
$o(r,7) = Gu(v/72 + 72) /qﬁ\/b
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2. CASE OF INTEREST

symmetric true vacuum

symmetry-breaking false vacuum

V(9*9)

False vacuum
True vacuum

0.1 L T1 9
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3. REALLY QUICK REVIEW : \VVORTICES

Monopoles (Kumar, et al., PRD82 025022 (2010), vortices (Lee, et
al., PRD88, 085031 (2013)) and cosmic strings (Lee, et al., PRDSS,
105008 (2013)) have been considered previously.

V($*9)
E.g. vortex:
Vortex (n=1, ¢=0.01, e=1.00)
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105008 (2013)) have been considered previously.

V(6*0)
E.g. vortex:
Vortex (n=1, ¢=0.01, e=1.00)
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REALLY QUICK ReEVIEW :\VOKRTICES

This configuration is classically stable.
But it is NOT, quantum mechanically.
Large (size R) thin-wall vortex:

1) Gradient energy ~ R
1 J
5

Potential energy ~ -R?
Magnetic energy ~ R
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REALLY QUICK ReEVIEW :\VOKRTICES

Q: Can vortices or cosmic strings
speed up (catalyze) vacuum decay?
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REALLY QUICK ReEVIEW :\VOKRTICES

Q: Can vortices or cosmic strings
speed up (catalyze) vacuum decay?

A: Yes! This occurs near the
“dissociation limit” of the vortex.
(See papers for details.)
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4. DOMAIN WALLS

Real scalar field
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DOMAIN WALLS
Topological defects created by spontaneous

symmetry breaking:

+V -V
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DOMAIN WALLS

Topological defects created by spontaneous
symmetry breaking:

+V -V

domain wall
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DOMAIN WALLS

Modify the potential:
V(y) = (¥* —1)*(@* — 1)
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DOMAIN WALLS

Modify the potential:
V(y) = (¥* —1)*(@* — 1)
V(y)
o

But no stable domain wall...
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DOMAIN WALLS

To get metastable domain walls with the
type of potential we are considering,
add a second scalar field (and a bizarre potential)

L= 2 (00) + 5(09)° — V(. ¢)
where

V(g,9) = @°-1)°*%°-d)

1 S 0 2
e (02— 17 - 220+ 1?)

26



I
N
ASY

(\V)
|

)
N——"

(\V)
/N
ASY

(\V)

|

%)
—t
N—"

V(¥, )

| 7



28



V()

DOMAIN WALLS




V()

1/y

DOMAIN WALLS

(62 -1




DOMAIN WALLS

V(y) V()

V(,9) = (@° =1)%*(%" = d1) : -
1

| 52
P2+

(6~ 12 = 2= 26+ 17)

1/y

Notes: true vacuum: (¢, ¢) = (0, —1)
falsevacua; (Uoo)= (11 -1

(among others)




DOMAIN WALLS

e (-7 - 20— D+ 1)
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VY, )

true vacuum

false vacua

DOMAIN WALLS
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DOMAIN WALLS
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DOMAIN WALLS
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large energy

true vacuum barrier

false vacua

Look for static solutions interpolating
between the false vacua
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First attempt: ' e Toe
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First attempt:

No!
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Second attempt: A jg i Y &
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DOMAIN WALLS

Second attempt: js e &

Yes! ¢ acts as a sort of
“enveloping function” for v,
preventing it from spreading.
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DOMAIN WALLS

Second attempt: js .

Numerical solution: -
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DOMAIN WALLS

The solution is classically stable, but will
tunnel to an unstable solution:
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DOMAIN WALLS

We would like to calculate the decay rate
of the domain wall. To do this:

* Fuclideanize

* Find solution of least action interpolating
between the static solution and an
unstable configuration of the same
energy

» Solution of least action dominates the
decay: D¢ 2]
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DOMAIN WALLS

We would like to calculate the decay rate
of the domain wall. To do this:

@on interpolating
tion and an

at1on of the same

 Euclideanize

* Find solution of le
between the st
unstable
energy 4

e Solution of least action dominates the
decay: D¢ 2]
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DOMAIN WALLS

Normal approach: look for a one-parameter family
of configurations which interpolate between the
stable and unstable configurations.
Typically: thin-wall approximation, eg vortex:

Vortex (n=50, e= 1.00, e= 0.01)

40 50
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DOMAIN WALLS

For the domain wall we create the following
family of configurations: if the solution is

(Y, @) = (Yo(x), Po(x))

then we take

¥, 6) = (%o(2), \(t) (9o() + 1) — 1)
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DOMAIN WALLS

Energy as a function of A:

grad i~
POL ==

esTEEE,,
.
3
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DOMAIN WALLS

Energy as a function of A:

grad i~
POL ==

PR oY
.
‘e
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DOMAIN WALLS

Effective action for A(t):

Euclideanize the field theory action:

Sely,¢] = / d%{% (0:)° + (0:9)° + (0:9)° + (009)°)
+V(¥,0)]

with V(y,¢) = @ -1 —61)

1 e 2
e (02— 17 - 2o -2+ 1?)

Substitute (1, ¢) = (¥, ¢™), integrate over .



DOMAIN WALLS

This gives:
Sl = / dt (%M)\Q + (E(X) — EO)>

where:

M= / T
E()) is the static energy of (¢, ¢")

(It is a quartic function of A;
coetficients can be evaluated numerically
(not terribly enlightening).)
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DOMAIN WALLS

SE[\t)] = / dt (%M}\Q Likon EO)>

The bounce satisfies the Euclidean
dE())

equation of motion: M)\ =

e
First integral: §M A =E(\) - E

dA

Then the bounce action can be written:

Selit]— /: d)\\/QM (E()\) - EO)
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5. CONCLUSIONS AND OUTLOOK

* Studied a model with metastable kinks in
1+1 dimensions

* Found a 1-parameter family of
configurations which (hopefully)
accurately describe tunnelling

* Obtained an expression for the bounce

action (related to the decay rate of the
kink)
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CONCLUSIONS AND OUTLOOK

Future work:

» Explore parameter space (and/or look for a
less artificial / contrived model)

* look specifically for regions where the bounce
action is small (analog of dissociation limit of
vortices)

* analog of thin-wall configurations for which
a more realistic bounce may be found

* examine the same model in higher
dimensions (so, domain walls in 3+1d)
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» Explore parameter space (and/or look for a
less artificial / contrived model)

* look specifically for regions where the bounce
action is small (analog of dissociation limit of
vortices)

* analog of thin-wall configurations for which
a more realistic bounce may be found

* examine the same model in higher
dimensions (so, domain walls in 3+1d)

Thank you!
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