
Tunneling and

domain walls 

L. Marleau1, R. MacKenzie2,!
M. Paranjape2, Y. Ung2!

!
1                                                 2                                .

arXiv:14xx.xxxx

1



barrier penetration!

decay phenomena (eg nuclei)!

bubble nucleation!

vacuum decay

2

Quantum particles can go in regions forbidden!
classically (negative kinetic energy), leading to 
interesting phenomena such as:



barrier penetration!

decay phenomena (eg nuclei)!

bubble nucleation!

vacuum decay

3

Quantum particles can go in regions forbidden!
classically (negative kinetic energy), leading to 
interesting phenomena such as:



Outline
1. Quick review of vacuum decay!

2. Case of interest : symmetric true vacuum, symmetry-
breaking false vacuum!

3. Really quick review of previous work: vortices and 
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vacuum decay!

5. Conclusions and outlook
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Key reference: S. Coleman, PRD15 
2929 (1977) 
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Quick review of vacuum decay

To compute the decay rate:
1. Euclideanize.

�V (�)

2. Solve equation of motion!
with boundary conditions:
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Quick review of vacuum decay

To compute the decay rate:
1. Euclideanize.

�V (�)

2. Solve equation of motion!
with boundary conditions:

3. The lowest-action nontrivial solution!
determines the decay rate:

�b

�/V = Ae�SE [�b]/~

� ! �0 as r, ⌧ ! 1,
@�

@⌧

����
⌧=0

= 0



13

�0 �1

Quick review of vacuum decay
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Bounce (O(4)-symmetric)
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2. case of interest

symmetric true vacuum!

symmetry-breaking false vacuum
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Monopoles (Kumar, et al., PRD82 025022 (2010), vortices (Lee, et 
al., PRD88, 085031 (2013)) and cosmic strings (Lee, et al., PRD88, 
105008 (2013)) have been considered previously.!

E.g. vortex:
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Note: true vacuum

3. really quick review : Vortices
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This configuration is classically stable.!
But it is NOT, quantum mechanically.!
Large (size R) thin-wall vortex:

f(r)

1

r

Potential energy ~ -R2!

Magnetic energy ~ R-2 

Gradient energy ~ R

R

really quick review : Vortices
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Q: Can vortices or cosmic strings!
speed up (catalyze) vacuum decay?

really quick review : Vortices
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Q: Can vortices or cosmic strings!
speed up (catalyze) vacuum decay?

A: Yes! This occurs near the!
“dissociation limit” of the vortex.!

(See papers for details.)

really quick review : Vortices
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Real scalar field
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4. Domain walls
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Topological defects created by spontaneous!
symmetry breaking:
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Modify the potential:

V ( ) = ( 2 � 1)2( 2 � �1)
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Modify the potential:

But no stable domain wall…
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To get metastable domain walls with the!
type of potential we are considering,!

add a second scalar field (and a bizarre potential)

L =
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(@ )2 +

1

2
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where
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First attempt:
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First attempt:

No!
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Second attempt:
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Second attempt:

Yes!     acts as a sort of!
“enveloping function” for    ,!
preventing it from spreading.

�
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Second attempt:

Numerical solution:
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The solution is classically stable, but will!
tunnel to an unstable solution:
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We would like to calculate the decay rate!
of the domain wall. To do this:

• Euclideanize!
• Find solution of least action interpolating 

between the static solution and an 
unstable configuration of the same 
energy!

• Solution of least action dominates the 
decay: � ⇠ e�SE/~

Domain walls



43

We would like to calculate the decay rate!
of the domain wall. To do this:

• Euclideanize!
• Find solution of least action interpolating 

between the static solution and an 
unstable configuration of the same 
energy!

• Solution of least action dominates the 
decay: � ⇠ e�SE/~

THIS IS HARD!

Domain walls
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Normal approach: look for a one-parameter family!
of configurations which interpolate between the!

stable and unstable configurations.!
Typically: thin-wall approximation, eg vortex:
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For the domain wall we create the following!
family of configurations: if the solution is

then we take
( ,�) = ( 0(x),�0(x))

( �
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Energy as a function of    :�
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Effective action for         : �(t)

Euclideanize the field theory action:
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This gives:

where:
M =

Z
dx(�0 + 1)2

SE [�(t)] =

Z
dt

✓
1

2
M �̇2 + (E(�)� E0)

◆

E(�) is the static energy of ( �,��)

(It is a quartic function of    ;!
coefficients can be evaluated numerically!

(not terribly enlightening).)

�

Domain walls
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SE [�(t)] =

Z
dt

✓
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◆

Domain walls

The bounce satisfies the Euclidean!
equation of motion: M �̈ =

dE(�)

d�

First integral:
1

2
M �̇2 = E(�)� E0

Then the bounce action can be written:

SE [�(t)] =

Z 1

�0

d�

r
2M

⇣
E(�)� E0

⌘



5. Conclusions and outlook
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• Studied a model with metastable kinks in 
1+1 dimensions!

• Found a 1-parameter family of 
configurations which (hopefully) 
accurately describe tunnelling!

• Obtained an expression for the bounce 
action (related to the decay rate of the 
kink)
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Conclusions and outlook

Future work:
• Explore parameter space (and/or look for a 

less artificial/contrived model)!
• look specifically for regions where the bounce 

action is small (analog of dissociation limit of 
vortices)!

• analog of thin-wall configurations for which 
a more realistic bounce may be found!

• examine the same model in higher 
dimensions (so, domain walls in 3+1d)
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dimensions (so, domain walls in 3+1d)


