Review of the current status of Higgs Properties

Florian U. Bernlochner

University of Victoria, Canada

November, 2013

CAP 2014 Sudbury

Introduction

- i. Higgs Boson Production and decay
- ii. The ATLAS detector and the LHC
- iii. Combined Mass measurements from $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$ Properties
- iv. Combining Coupling measurements for all search channels
- v. Combined Spin analysis from $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$
- vi. Differential Cross sections from $H
 ightarrow \gamma \gamma$

Summary

vii. Conclusions & Outlook

[ATLAS-CONF-2014-009] [Phys. Lett. B 726 (2013) 88] [ATLAS-CONF-2013-072] [ATLAS-CONF-2013-040]

New: [Mass paper - to be submitted]

Existence of Higgs field essential for mass generation of Weak vector bosons + quarks & leptons in Standard Model

Spontaneous symmetry breaking in Higgs Mechanism produces new scalar particle: the Higgs boson

In *pp* collisions Higgs Boson produces via $gg \rightarrow H$, VBF, *ZH*, *WH* & *ttH*

Cross section for various m_H at $\sqrt{s} = 8$ TeV:

i.b Higgs Boson Decay & Discovery

Higgs Boson decays after $10^{-10} - 10^{-13}$ ps into other SM particles

Branching fractions for Higgs decay:

July 4th 2012: ATLAS and CMS announced discovery of new boson

Searches overview: (see talk of Doug Schouten); Coupling & Spin compatible with SM Higgs boson

ii. ATLAS Detector & Large Hadron Collider

ATLAS is multipurpose detector

focus: Higgs, EW, BSM, B physics

Multilayered EM & Hadronic calorimeter

excellent Tracking & Muon detection

Very successful 2011& 2012 run period:

Torold Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

ATLAS detector & arial picture of the LHC

iii.a New! Combined mass measurements for $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$

Much improved EM cluster energy correction via MVA regression & more accurate geometry

 \rightarrow Largely improved resolution for $H \rightarrow \gamma \gamma$.

Energy scale & resolution extracted from reference process: $Z \rightarrow ee$

Good data & sim. agreement after corrections

linearity and extrapolation to photons checked with other leptonic reference processes and $Z \rightarrow \ell \ell \gamma$ events.

Large effort reduced systematic uncertainties in $H\to\gamma\gamma$ by more than a factor of two

iii.b New! Combined mass measurements for $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$

 $H \rightarrow ZZ^* \rightarrow 4\ell$

Two measurements w/ good mass resolution:

 $H \rightarrow \gamma \gamma$

 $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^* \rightarrow 4\ell$

Higgs Mass [GeV] Old calibration $\begin{array}{c} 125.98 \pm 0.42 \pm 0.28 \\ 126.8 \pm 0.2 \pm 0.7 \end{array} \begin{array}{c} 124.51 \pm 0.52 \pm 0.06 \\ 124.3 {}^{+0.6} {}^{+0.5} \\ 124.3 {}^{-0.5} {}^{-0.5} \\ -0.5 {}^{-0.3} \end{array}$

First error is statistical, second systematic.

Combine both measurements under the assumption of a single resonance:

Profile likelihood for combination

 $\Lambda(m_H) = \frac{\mathcal{L}(m_H)}{\mathcal{L}(\widehat{m}_H)}$

with the full likelihood contours from the individual measurements in $m_H \& \mu$, taking into account correlated systematics.

Diphoton and 4ℓ mass spectra

iii.c Combining Mass measurements from $H \rightarrow \gamma \gamma \& H \rightarrow ZZ^*$

Combined mass maximizing test statstics:

 $m_{H} = 125.36 \pm 0.37 \pm 0.18$ GeV Old calibration 125.5 $\pm 0.2^{+0.5}_{-0.6}$ GeV

To test the consistency between both measurements a modified test statistic can be used.

$$\Delta m_H = m_H^{\gamma\gamma} - m_H^{4\ell}$$

 $\Delta m_H = 1.47 \pm 0.67 \pm 0.28 \text{ GeV}$ Old calibration 2.3^{+0.6} \pm 0.6 GeV

Compatibility with Δm_H of the level of 4.9% (2.0 σ)

Assuming non-gaussian uncertainties for the 3 principal systematic uncertainties ($Z \rightarrow ee$ calibration/extrapolation, material upstream & energy scale of presampler detector) improves compat. to 11%.

iv.a Combining Coupling measurements

Signal strength combination from

 $\begin{array}{l} H \rightarrow \gamma\gamma, \ H \rightarrow ZZ^* \rightarrow 4\ell, \ H \rightarrow WW^* \rightarrow \ell\nu\ell\nu \\ VH \rightarrow Vb\bar{b} \ , \ H \rightarrow \tau\tau \end{array}$

Can **combine all measurements** under the assumption of a single resonance:

Profile likelihood for combination

$$\Lambda(\mu) = rac{\mathcal{L}(\mu)}{\mathcal{L}(\widehat{\mu})}$$

 $\begin{array}{c} \textbf{Coupling strength } \mu = \sigma^{\text{measured}} / \sigma^{\textbf{SM}} \\ \mu & \begin{array}{c} H \rightarrow \gamma \gamma & H \rightarrow ZZ^* \rightarrow 4\ell & H \rightarrow WW^* \rightarrow \ell \nu \ell \nu \\ 1.6 \pm 0.3 & 1.4 \pm 0.4 & 1.0 \pm 0.3 \end{array} \\ \hline & VH \rightarrow V b \overline{b} & H \rightarrow \tau \tau \\ 0.2 \pm 0.7 & 1.4 \pm 0.5 \end{array}$

Evaluated at $m_H = 125.5 \text{ GeV}$

Plots: Transverse mass $m_T = \left(\left(E_T^{\ell\ell} + E_T^{\text{miss}} \right)^2 - \left| \mathbf{p}_T^{\ell\ell} + \mathbf{E}_T^{\text{miss}} \right| \right)^{1/2}$ distributions for $H \to WW * \to \ell \nu \ell \nu$

iv.b Combining Coupling measurements

Combined signal strength results for μ and $\mu_{VBF+VH}/\mu_{ggF+ttH}$:

Overall signal production strength: $\mu = 1.30^{+0.18}_{-0.17}$

Evidence for VBF+VH: $\mu_{VBF+VH}/\mu_{ggF+ttH} = 1.4^{+0.7}_{-0.5}$

iv.c Combining Coupling measurements

μ "//,ZZ*,WW*,πτ μ VBF+VH 24 2 In A ATLAS Preliminary ATLAS Preliminary 22 √s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹ √s = 7 TeV ∫Ldt = 4.6-4.8 fb⁻¹ 58% CL 20 √s = 8 TeV Ldt = 20.3 fb⁻¹ - 95% CL √s = 8 TeV ILdt = 20.3 fb⁻¹ 18 $-H \rightarrow \gamma\gamma$ 16 $H \rightarrow 77^* \rightarrow 41$ mu = 125.5 GeV $\rightarrow WW^* \rightarrow h/h'$ 14 - combined ···· SM expected = 125.5 GeV -2 -1 1 2 2.5 3.5 -0.5 0 0.5 1.5 2 3 $\mu_{qqF+ttH}^{\gamma\gamma,ZZ^*,WW^*,\tau\tau}$ $\mu_{VBF} / \mu_{ggF+ttH}$

Projection in $\mu_{VBF+VH}-\mu_{ggF+ttH}$ plane:

Coupling ratio for VBF production only: $\mu_{VBF}/\mu_{ggF+ttH} = 1.4^{+0.5}_{-0.4} + 0.4_{-0.3}_{-0.4}$

 \rightarrow Evidence at 4.1 σ for VBF production!

iv.d Combining Coupling measurements

More detailed study on the Higgs coupling can be done via *leading order tree-level motivated* framework.

Assumptions:

- i. Single resonance at $m_H = 125.5 \text{ GeV}$
- ii. Narrow width approximation holds, i.e. rates of the process $i \rightarrow H \rightarrow f$ are given by

$$\sigma \cdot \mathcal{B} = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

with Γ_H the Higgs width, and Γ_f the partial width of the $H \to f$ transition, and σ_i the cross section for $i \to H$ production.

iii. No modifications in the tensor structure of the SM Lagrangian, i.e. Higgs is 0^+

Free parameters in the framework: coupling scale factors κ_j^2 ratio of measured over SM cross section times partial decay width , κ_H^2 the total Higgs width, or double ratios of the coupling scale factors $\lambda_{ij} = \kappa_i / \kappa_j$.

E.g. the effective couplings of $gg \to H \to \gamma\gamma$ can be written as

$$\frac{(\sigma \cdot \mathcal{B})^{\text{meas}}}{(\sigma \cdot \mathcal{B})^{\text{SM}}} = \frac{\kappa_g^2 \kappa_\gamma^2}{\kappa_H^2}$$

Selection of benchmark models with focus on different observables:

Model	Probed	Parameters of	Functional assumptions				ons	Example: $gg \rightarrow H \rightarrow \gamma \gamma$		
	couplings	interest	κ_V	KF	κg	κγ	КH			
1	Couplings to	κ_V, κ_F	\checkmark		\checkmark	\checkmark	\checkmark	$\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F,\kappa_V)/\kappa_H^2(\kappa_F,\kappa_V)$		
2	fermions and bosons	$\lambda_{FV}, \kappa_{VV}$		\checkmark	\checkmark		-	$\kappa_{VV}^2 \cdot \lambda_{FV}^2 \cdot \kappa_{\gamma}^2(\lambda_{FV}, \lambda_{FV}, \lambda_{FV}, 1)$		
3	Custodial symmetry	$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$	-		\checkmark	\checkmark	-	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$		
4	Custodiai Symmed y	$\lambda_{WZ}, \lambda_{FZ}, \lambda_{\gamma Z}, \kappa_{ZZ}$	-	\checkmark	\checkmark	-	-	$\kappa^2_{ZZ} \cdot \lambda^2_{FZ} \cdot \lambda^2_{\gamma Z}$		
5	Vertex loops	κ_g, κ_γ	=1	=1	-	I	\checkmark	$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2(\kappa_g, \kappa_\gamma)$		

The ticks correspond to a certain fixed functional dependence - more details in backup

Model 1: One coupling factors for fermions and one coupling factor for bosons: $\kappa_{F_{1}}, \kappa_{V}$

Model 2: Removing the constraint on the Higgs boson width (i.e. that the measured partial widths have to saturate the total width) only the rato $\lambda_{FV} = \kappa_F/\kappa_V$ and $\kappa_{VV} = \kappa_V^2/\kappa_H$ can be measured.

Model 1	Model 2					
$\kappa_F = 0.99^{+0.17}_{-0.15}$	$\lambda_{FV} = 0.86^{+0.14}_{-0.12}$					
$\kappa_V = 1.15^{+0.08}_{-0.08}$	$\kappa_{VV} = 1.28^{+0.16}_{-0.15}$					

Compatibility of SM with both model fits: 10%.

iv.f Combining Coupling measurements

Spin & CP can be inferred by angular correlation of Higgs decay products:

Channels used for combination: $H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^*, H \rightarrow WW^*.$ \downarrow Hypothesis test: Spin 0⁻ (SM) versus Spin 2⁺

Test spin 2 admixture of leading order $q\bar{q} \rightarrow X$ & $gg \rightarrow X$ production: $f_{q\bar{q}}$

Entire Spin 2^+ configuration space excluded at **99.9%** CL_s .

Differential cross section measurements from $H \rightarrow \gamma \gamma$

Measured 7 variables: Higgs p_T and rapidity, $\cos \Theta^*$, N_{jets} , leading jet p_T , p_T^{H+jj} , $\Delta \phi_{jj}$

Higgs p_T , helicity angle, and N_{jets} compared with HRes, Powheg+Py8, HJ Minlo+Py8

Compatibility with SM predictions:

P-value based on χ^2 using full experimental + theory covariance

	Njets	$p_{\mathrm{T}}^{\gamma\gamma}$	$ y^{\gamma\gamma} $	$ \cos \theta^* $	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	$p_{\mathrm{T}}^{\gamma\gamma jj}$
POWHEG	0.54	0.55	0.38	0.69	0.79	0.42	0.50
MINLO	0.44	-	-	0.67	0.73	0.45	0.49
HRES 1.0	-	0.39	0.44	-	-	-	-

- * Statistical limited at this point
- $\rightarrow\,$ Good agreement with SM predictions.

vi.a Conclusion

* New: Combination of precision mass measurement from $H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^*$:

$$m_H = 125.36 \pm 0.37 \pm 0.18 \text{ GeV}$$

New calibration reduces tension between both channels.

* Overall signal production strength combining $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, $VH \rightarrow Hb\bar{b}$, $H \rightarrow \tau \tau$: (with old calibration and mass)

$$\mu = 1.30^{+0.18}_{-0.17}$$

Observed coupling compatible with SM Higgs

* VBF coupling strength from combination:

 $\mu_{ extsf{VBF}}/\mu_{ extsf{ggF+ttH}} = 1.4^{+0.5+0.4}_{-0.4-0.3}$

 \rightarrow Evidence of 4.1 σ for VBF production of Higgs

* Results with *leading order tree-level motivated* framework:

Assumptions Single resonance, 0^+ , narrow width approx.

- * 5 models with focus on different observables:
 - 1/2 Couplings to Fermions & Bosons
 - 3/4 Custodial Symmetry
 - 5 Vertex loops
- \rightarrow All determined couplings compatible with the SM (p-values ranging from 12-20%)
 - * Differential cross section measurements from $H \rightarrow \gamma \gamma$
 - * 7 observables studied, e.g. Higgs p_T and helicity angle
- $\rightarrow\,$ All measured distributions compatible with the SM.

Updated coupling analysis paper in preparation

Updated differential & fiducial cross section paper in preparation

Other interesting results out, like low- & high-mass search for additional narrow resonances [ATLAS-CONF-2014-031]

We are in the transition period from discovery to more precise measurements. Very exciting conditions for LHC Run period 2.

Slight **Paradigm shift ongoing:** unfolded differential distributions will make it possible for outsiders to test our understanding of the Higgs boson

Thank you

Backup