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Model Hamiltonian

Ĥ = JŜA · ŜB − D
(

Ŝ2
A,z + Ŝ2

B,z

)
+ hz(ŜA,z − ŜB,z)

J > 0 is the antiferromagnetic interaction, D > 0 is an
easy-axis anisotropy, and hz = gµBh is the external
staggered magnetic field.
We consider the case of strong anisotropy D� J

We also consider the case of equal spins sA = sB = s. For
[Mn4O3Cl4(O2CEt)3(py)3]2 or [Mn4]2 dimer s = 9

2 (exact
numerical diagonalization) Wernsdorfer W. et al, PRL 91,
227203 (2003)
We will specialize on large spins s� 1
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Spin wave function

Consider the problem of finding the exact eigenvalues of
the system for large spins s� 1:
The spin wavefunction in the Hilbert space dim(H) =
dim(HA ⊗HB)= (2sA + 1)⊗ (2sB + 1) can be written as:

ψ = ψA ⊗ ψB =

sA,sB∑
mA=−sA
mB=−sB

CmA,−mBMmA,−mB

where

MmA,−mB =

(
2sA

sA + mA

)−1/2( 2sB

sB − mB

)−1/2

| mA,−mB〉
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Eigenvalue equation

Ĥψ = Eψ

ECmA,−mB =
[
−JmAmB − D(m2

A + m2
B) + hz(mA + mB)

]
CmA,−mB

+
J(sA − mA + 1)(sB − mB + 1)

2
CmA−1,−mB+1

+
J(sA + mA + 1)(sB + mB + 1)

2
CmA+1,−mB−1

Exact solution for E exits for small spins: 1/2,1,3/2,2.
What about large spins, say s = 20, 50, 100?
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Generating function

F(x1, x2) =

sA,sB∑
mA=−sA
mB=−sB

CmA,−mBemAx1e−mBx2

Eigenvalue equation becomes:

− D
(

d2F
dx2

1
+

d2F
dx2

2

)
− J cosh (x1 − x2)

d
dx1

(
dF
dx2

)
+ J

d
dx1

(
dF
dx2

)
− (hz − JsA sinh(x1 − x2))

dF
dx2

+ (hz − JsB sinh(x1 − x2))
dF
dx1

+ (JsAsB cosh(x1 − x2)− E)F = 0

S. A. Owerre and M. B Paranjape Universitè de Montrèal Phys. Lett. A 378, (2014), 1407 Phys. Rev. B 88, (2013), 220403(R)

Phase Transition of the Escape Rate in Large Spin Dimer Model



Model Hamiltonian Effective potential method Phase transition of the escape rate conclusion

Differential equation with variable coefficients

r = x1 − x2, q =
x1 + x2

2

P1(r)
d2F
dr2 +P2(r)

d2F
dq2 +P3(r)

dF
dr

+P4(r)
dF
dq

+ (P5(r)−E)F = 0

P1(r) = −2
[

D +
J
2
− J

2
cosh r

]
, P2(r) = −1

2

[
D− J

2
+

J
2

cosh r
]

P3(r) = (2gµBh− J(sA + sB) sinh r), P4(r) =
J(sA − sB)

2
sinh r,

P5(r) = JsAsB cosh r

Couldn’t find a solution of the ODE for sA 6= sB!!!.
For sA = sB = s, P4(r) = 0, solution exits: F(r, q) = X (r)Y(q)
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Differential equation for sA = sB = s

The generating function simplifies to:

F(r, q) =

s,s∑
mA=−s
mB=−s

CmA,−mBe
(mA+mB)r

2 e
(mA−mB)q

2︸ ︷︷ ︸
1

= X (r)

The ODE becomes (r → r + iπ for convenience):

− 2
(

D +
J
2

+
J
2

cosh r
)

d2X
dr2 + 2(gµBh + Js sinh r)

dX
dr

−
(
Js2 cosh r − E

)
X = 0

If we could eliminate the first derivative term, then the resulting
equation is the well-known Schrödinger equation
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Schrödinger equation
Introducing a particle wavefunction:

Ψ(r) = e−y(r)X (r), Ψ(r)→ 0 as r → ±∞

y(r) = s ln[(2 + κ+ κ cosh r)]
2s̃α√
1 + κ

arctanh
[

tanh
( r

2

)
√

1 + κ

]
where s̃ = (s + 1

2), κ = J/D and α = hz/2Ds̃.

The ODE for Ψ(r) becomes a Schrödinger equation:

HΨ(r) = EΨ(r) : H = − 1
2µ(r)

d2

dr2 + U(r)

U(r) = 2Ds̃2u(r), u(r) =
2α2 + κ(1− cosh r) + 2ακ sinh r

(2 + κ+ κ cosh r)

µ(r) = [2D (2 + κ+ κ cosh r)]−1
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Effective potential and reduced mass
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Escape rate
The escape rate in the semiclassical approximation is given by
(Affleck PRL 46, 388, 1981)

Γ ∝
∫ Umax

Umin

dEP(E)e−β(E−Umin), β−1 = T

The transition amplitude and the Euclidean action are given by

P(E) ∼ e−S(E), S(E) = 2
∫ r(E)

−r(E)
dr
√

2µ(r)(U(r)− E)

As β →∞(T → 0) , which is related to ~→ 0 in Feynman path
integral. The integral is dominated by the stationary point:

β = τ(E) = −dS(E)

dE
=

∫ r(E)

−r(E)
dr

√
2µ(r)

U(r)− E
period of oscillation
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Escape rate
The order of phase transition can be characterized by the
behaviour of τ(E) (Chudnovsky PRA 46, 8011, (1992))

If τ(E) is a nonmonotonic function of E , in other words τ(E)
has a minimum at some point E1 < ∆U (∆U barrier height)
and then rises again we get a first-order phase transition
If τ(E) is monotonically increasing with decreasing E we
get a second-order phase transition
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Escape rate

The escape rate in this approximation can also be written as
(Chudnovsky and Garanin PRL 79, 4469, 1997 )

Γ ∼ e−βFmin

and Fmin is the minimum of the effective free energy

F = E + β−1S(E)− Umin

with respect to E .
The order of phase transition can be also be analyzed with the
free energy if the Euclidean action S(E) can be calculated.
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Escape rate
As T → 0, E → Umin, the
escape rate (tunneling rate) is

Γ ∝ e−B B is the instanton action

As T > ~ω0, E → Umax the
particle can cross over the
barrier (classical activation)

Γ ∝ e−
∆U

T ∆U barrier height
Crossover temperature from quantum to classical regimes
T(1)

0 = ∆U/B (First-order phase transition).

Comparing with the WKB exponent e−
2π∆U
ωb , ω2

b = −U′′(xs)/µ(xs)
at T = 0:
T(2)

0 = ωb/2π (Second-order phase transition )
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Phase transition at zero field α = 0 — Euclidean action
At zero magnetic field the effective potential reduces to:

U(r) =
2Dκs2(1− cosh r)

(2 + κ+ κ cosh r)

The exact Euclidean action is found to be:

S(E) = 4s
√

2(a + b)κ[K(λ′)− (1− γ2)Π(γ2, λ′)], λ′2 =
a− b
a + b

where a = 1− (2 + κ)E ′, b = 1 + κE ′, and E ′ = E/2Ds2κ.
γ2 = λ′2(1 + κ)−1.
The functions K(λ′) and Π(γ2, λ′) are known as the complete
elliptic integral of first and third kinds respectively.
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Phase transition at zero field α = 0 — Free energy
Introducing the dimensionless energy quantity:

Q =
Umax − E

Umax − Umin
, Q→ 0 as E → Umax and Q→ 1 as E → Umin

Also a dimensionless temperature quantity: θ = T/T(2)
0

λ′2 =
(1 + κ)Q
κ+ Q

, γ2 =
Q

κ+ Q

F/∆U = 1− Q +
4
π
θ
√
κ(κ+ Q)[K(λ′)− (1− γ2)Π(γ2, λ′)]

τ(E) =
2

Ds
√

(κ+ Q)
K(λ′)

where ∆U = 2Ds2
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Phase transition at zero field α = 0 — Free energy

Θ = 1
1.025

1.055

1.095
1.13

Κ = 0. 4
First-order phase transition

Top barrier Bottom barrier
0.0 0.2 0.4 0.6 0.8 1.00.95

1.00

1.05

1.10

Q

F�D
U

The free energy for κ = 0.4 has one minimum at θ = 1.13,
as θ is decreased, there can be two or more minima.
First-order phase transition occurs when the two minima
are the same i.e θ = 1.055 or T(1)

0 = 1.055T(2)
0 where

T(2)
0 = ωb

2π = Ds
√
κ

π
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Phase transition at α = 0 — Period of oscillation

Κ = 0.03
0.09
0.2

1.5

Top barrier Bottom barrier
0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

Q

ΤHEL
�ΤHU

ma
xL

For κ > 1, the period monotonically increases with
decreases energy —Second-order transition
For κ < 1, the period has a minimum and arises again
—First-order transition
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Phase transition at α = 0 — Landau theory
Near the top of the barrier Q→ 0, the free energy simplifies:

F/∆U = 1+(θ−1)Q+
θ

8κ
(κ−1)Q2+

θ

64κ2 (3κ2−2κ+3)Q3+O(Q4)

The Landau’s free energy has the form:

F = F0 + aψ2 + bψ4 + cψ6

The coeff. a is related to the coeff. of Q. It changes sign at
T = T(2)

0 .
The phase boundary between the first- and the
second-order phase transitions depends on the coeff. b,
which is related to the coeff. of Q2. It changes sign at
κ = 1. Thus κ < 1 indicates the first-order phase transition.
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Phase transition at α 6= 0 — Euclidean action
At non-zero field there is no exact expression for S(E).
Expanding near the top of the barrier rb (Kim, JAP 86, 1062,
1999.):

S(E) = π

√
2µ(rb)

U′′(rb)
∆U[Q + GQ2 + O(Q3)]

G =
∆U

16UU′′

[
12U′′′′U′′ + 15(U′′′)2

2(U′′)2 + 3
(
µ′

µ

)(
U′′′

U′′

)
+

(
µ′′

µ

)
− 1

2

(
µ′

µ

)2 ]
r=rb

, rb = ln
(

1 + α

1− α

)
, ∆U = 2Ds̃2 (1− α)2

U′′(rb) = −Ds̃2u′′(rb)/2!, U′′′(rb) = Ds̃2u′′′(rb)/3!,
U′′′′(rb) = Ds̃2u′′′′(rb)/4!.

S. A. Owerre and M. B Paranjape Universitè de Montrèal Phys. Lett. A 378, (2014), 1407 Phys. Rev. B 88, (2013), 220403(R)

Phase Transition of the Escape Rate in Large Spin Dimer Model



Model Hamiltonian Effective potential method Phase transition of the escape rate conclusion

Phase transition at α 6= 0 — Free energy
The free energy has the form:

F(Q)/∆U = 1 + (θ − 1)Q + θGQ2 + · · ·

The Landau coefficient is found to be:

G ≡ b =
(κ− 1 + α2(1 + 2κ))

8κ(1 + α)2

First-order transition G < 0. Second-order transition G > 0
At the phase boundary G ≡ b = 0 which yields

αc = ±
√

1− κc

1 + 2κc
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Phase transition at α 6= 0 — Phase boundary

First-order phase transition  G < 0

Second-order phase transition  G > 0

Phase boundary G = 0

No barrier

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

0.2

0.4

0.6

0.8

1.0

1.2

Αc

Κ c
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Phase transition at α 6= 0 — Crossover temperature
The second-order crossover transition temperature at the
phase boundary is given by

T(c)
0 =

ωc
b

2π
=

Ds̃
π

(1− α2
c)√

1 + 2α2
c

=
Ds̃κc

π

(
3

1 + 2κc

) 1
2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Αc

T 0
HcL

For [Mn4]2 dimer, the
parameters are: s = 9/2,
D = 0.75K, J = 0.12K.
We obtain T(c)

0 = 0.29K.
Smaller than Fe8
molecular cluster
T(c)

0 = 0.79K.
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Conclusion

In conclusion:

We have investigated an effective Hamiltonian of a dimeric
molecular nanomagnet which interacts
antiferromagnetically in a staggered magnetic field.
We showed that the boundary between the first-and
second-order phase transitions is greatly influenced by the
staggered magnetic field.
We obtained the crossover temperature at the phase
boundary for [Mn4]2
The results for the crossover temperatures can be
investigated experimentally
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