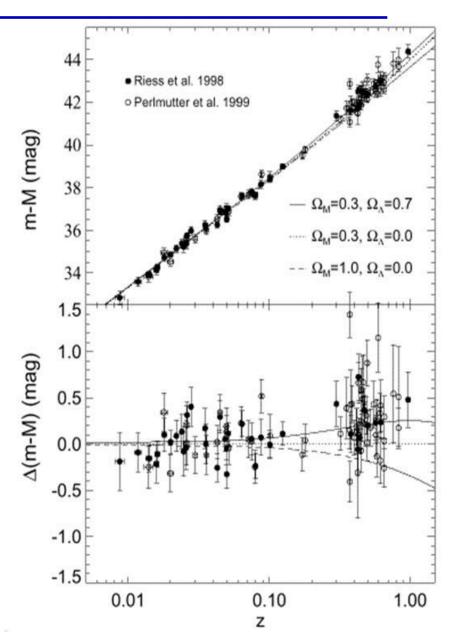

ALTAIR: Precision Photometric Calibration via Low-Cost Artificial Light Sources Above the Atmosphere

Divya Bhatnagar Univ. of Victoria

Telescopic Atmospheric Interference Reduction

for



Supernova surveys in the 1990s revealed that the Hubble expansion is accelerating.

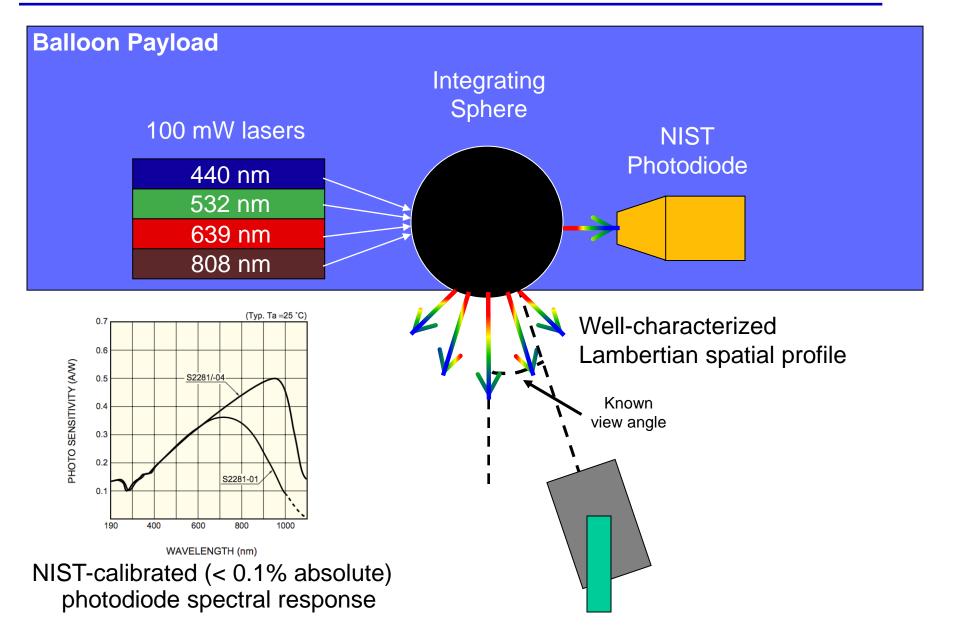
The acceleration is caused by mysterious "dark energy."

The challenge of the 1990s was supernova statistics; the challenge of today is to measure Supernova flux at better than 1% precision.

Calibration is the critical item for further progress in supernova surveys.

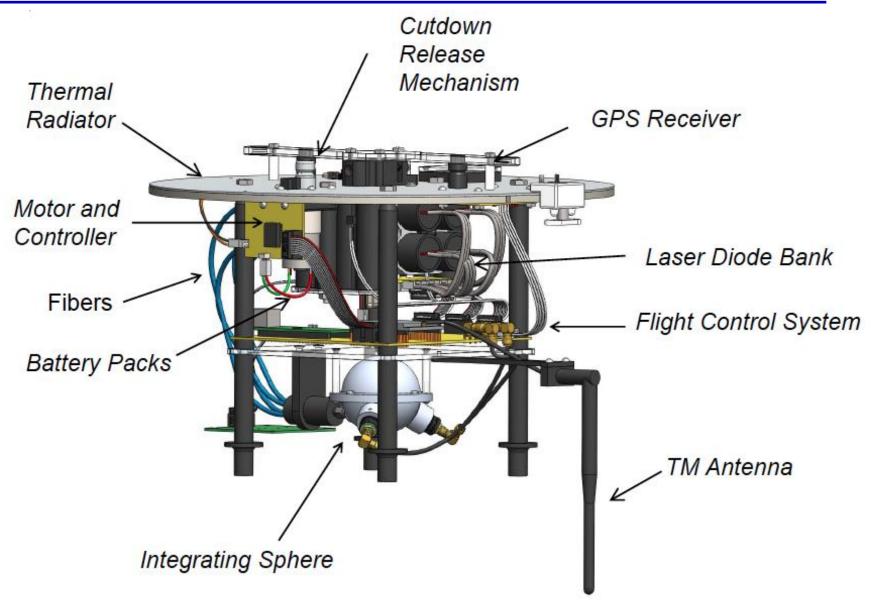
Uncertainty on supernova photometry COMPLETELY **DOMINATES** both present & future SNIa dark energy measurements

Table 7: Identified systematic uncertainties								
Description	Ω_m	w	Rel. Area ^a	w for $\Omega_m{=}0.27$				
Stat only	$0.19\substack{+0.08\\-0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	-1.031 ± 0.058				
All systematics	0.18 ± 0.10	$-0.91\substack{+0.17\\-0.24}$	1.85	$-1.08\substack{+0.10\\-0.11}$				
Calibration	$0.191\substack{+0.095\\-0.104}$	$-0.92\substack{+0.17\\-0.23}$	1.79	-1.06 ± 0.10				
SN model	$0.195\substack{+0.086\\-0.101}$	$-0.90\substack{+0.16\\-0.20}$	1.02	-1.027 ± 0.059				
Peculiar velocities	$0.197\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.03	-1.034 ± 0.059				
Malmquist bias	$0.198\substack{+0.084\\-0.100}$	$-0.91\substack{+0.16\\-0.20}$	1.07	-1.037 ± 0.060				
non-Ia contamination	$0.19\substack{+0.08 \\ -0.10}$	$-0.90\substack{+0.16\\-0.20}$	1	-1.031 ± 0.058				
MW extinction correction	$0.196\substack{+0.084\\-0.100}$	$-0.90\substack{+0.16\\-0.20}$	1.05	-1.032 ± 0.060				
SN evolution	$0.185\substack{+0.088\\-0.099}$	$-0.88\substack{+0.15\\-0.20}$	1.02	-1.028 ± 0.059				
Host relation	$0.198\substack{+0.085\\-0.102}$	$-0.91\substack{+0.16\\-0.21}$	1.08	-1.034 ± 0.061				


^aArea relative to statistical only fit of the contour enclosing 68.3% of the total probability.

Note. — Results including statistical and identified systematic uncertainties broken down into cat In each case the constraints are given including the statistical uncertainties and only the stated sys contribution. The importance of each class of systematic uncertainties can be judged by the relat compared with the statistical-only fit.

SNLS: Conley et al (2011), ApJS **192**, 1:


Technique: A 0.1% Calibrated, Mobile Source Above the Atmosphere

Payload Design

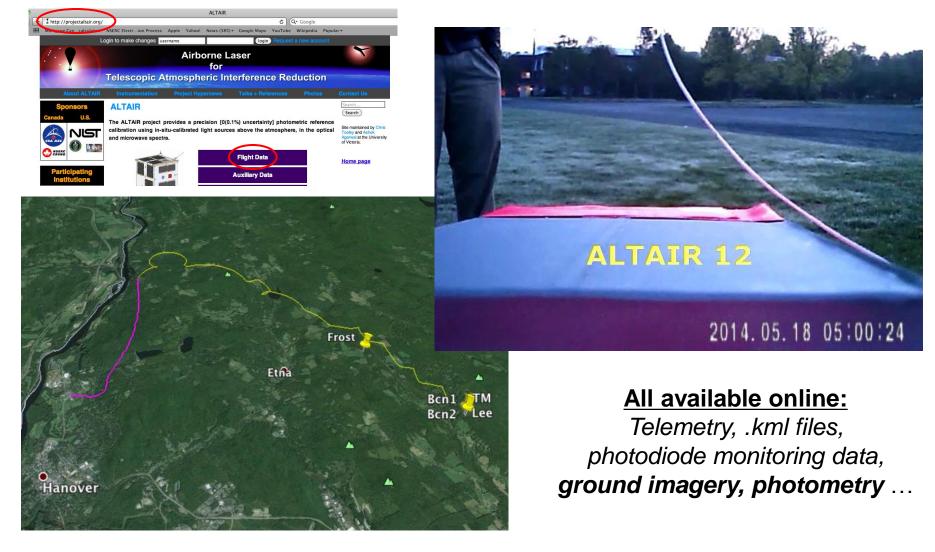
Payload

Flight Control

Onboard primary radio (RFM DNT900P, 1W omni, 200 kbps)

910 MHz
directional
antennas,
range approx.
60 km.
Always ≥ 2
ground stations
in contact.

Onboard payload attitude accelerometer/magnetometer


Onboard highaltitude-capable GPS (Inventek ISM300F2)

ALTAIR Ba	ase Station - Goldston	ne				- 0 >
	Rx Data	Simulation		Мар	00:00:00	
Release	\$C320.1P2.1R-14.)2	
Start Log	\$ID Simulation	8010,37000,37500,3407			2	
✓ Log XLS	.0, M, -34.2, M, ,00		054,W,1,10,1.2,1499			
Log Rx	\$C320.1P2.1R-14. \$A,10000,11000,3	3T25.5*3F 8010,37000,37500,3407	8,47840,00000,00747		~ 0	
I Log KML				I (<u>/</u> ⁰	\sim	
				1 15	4	3
Track				hX.		h
Setup				+	XX	
Diagnostics				-5		8
Night Mode				10000		
Nav		0,4341.8278,N,07214.1	054,W,1,10,1.2,149	Airports 🔽 0	lities 🔽 Mountains	UTC 14:45:08.000
	9.0,M,-34.2,M,,0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		I Water I F	Roads 🥅 Labels	Lat 43.697130
Quit	GSV	GSA				Lon .72.235090
	\$C320.1P2.1R-14.	3T25.5*3F \$A,	10000,11000,38010,37	<	× >	Alt 1499.0
Disarm	Photo V (0.76 🔶 L1 🔶	Base Lat 43.685430	Heading 32	0.1 CRS 220	Azimuth 294.1
Cutdown	Ambient Temp	7.00 🔶 L2 Bon	Base Lon .72.199090	Pitch	2.1 GSP 19	Elevation 18.7
65000 ft	Battery Temp	3.29 • L3 •	Base Elv 419.000	Roll -1	4.3 ROC 5	Range 3.359
Execute	Primary Bus V	7.30 🕒 L4 Mux	Set Base	Temp 2	5.5	Distance 3.181

Flights and Data (so far)

Twelve flights to date (most recent 1 month ago), all test flights over New Hampshire so far.

Imagery, and Upcoming Plans

Portable observation station:

Meade LX200GPS 12" telescope

with SBIG ST-8300 camera:

Vega, m=0Deneb, m=1.2Polaris, m=2ALTAIR
Height: 13971 ft
Dist: 7.35 km
Alt: 35°

performing full end-toend flight tests of ALTAIR photometric precision this

We will be

summer ...

A5A 11Dec12 532 nm 13 km LX200 ST8300

... then on to flight tests over Mt. Hopkins (AZ) and Pan-STARRS (Maui).

Following that, we intend to begin flight testing in Chile in 2016.

Conclusion

- Artificial sources are, in principle, able to reach up to two orders of magnitude better photometric calibration precision than any natural light sources.
 - 1) Can study them into the lab before and after use, unlike stars.
 - 2) Can *monitor them in-situ*, in real time.
 - 3) Can be used to *calibrate white dwarfs* (and the Moon) very precisely, and on a detector-based standards scale.
 - 4) Small balloons are *inexpensive*.
 - 5) Your *choice of spectrum* & color on demand (including microwave! etc.), ...and *brightness*, ... *location* in the sky, and time of night (or day), ...
- This is a core program for LSST: will be a primary photometry calibration method for LSST SNIa observations.
- MORE NEWS AND DATA FROM US SOON !!!

Yorke Brown, Max Fagin, Cynthia Tan, Waad Kahouli Dartmouth

Arnold Gaertner, Jeff Lundeen NRC-INMS

Matt Dobbs, Khoi Nam, Nate Long McGill

Keith Vanderlinde, Ray Carlberg Toronto

Christopher Stubbs, Peter Doherty, William High, Isaac Shivvers Harvard

Keith Lykke, Steven Brown, Claire Cramer, John Woodward *NIST*

Justin Albert, Karun Thanjavur, Paul Kovacs, Divya Bhatnagar, Ryan Thomas Univ. of Victoria

NRC Institute for National Measurement Standards

McGill

