HIGH-PRECISION HALF-LIFE AND BRANCHING-RATIO MEASUREMENTS FOR THE SUPERALLOWED β⁺ EMITTER ²⁶AI^m

Dr. Paul Finlay, DNP Thesis Prize Winner 2013 Department of Physics, University of Guelph, Ontario, Canada

Overview

- Introduction
 - Superallowed Fermi β decay Why ²⁶Al^m?
- Experiment
 - Half-life of ²⁶Al^m
 - Branching Ratios for ²⁶Al^m Decay
- Results and Discussion
 - The ²⁶Al^m ft and $\mathcal{F}t$ values
 - Impact
- Future Work

Superallowed Fermi ß Decay: Corrections

 Δ_R^{V} = nucleus independent inner radiative correction: 2.361(38)%

 $δ'_R = nucleus dependent radiative correction to order Z²α³: ~1.4%$ - depends on electron's energy and*Z*of nucleus

 δ_{NS} = nuclear structure dependent radiative correction: -0.3% – 0.03%

 δ_{C} = nucleus dependent isospin-symmetry-breaking correction: 0.2% – 1.5% - strong nuclear structure dependence

 $δ_{C} = δ_{C1} + δ_{C2}$ (isospin mixing plus radial overlap)

Theoretical treatment of δ_{C}

Several approaches to ISB corrections

- → Nuclear Shell Model
- → Relativistic Hartree-Fock
- → Random Phase Approximation
- → Energy Density Functional theory

Isospin-Symmetry-Breaking Corrections

W.E. Ormand and B.A. Brown, Physical Review C **52**, 2455 (1995) I.S. Towner and J.C. Hardy, Physical Review C **66**, 035501 (2002)

Isospin-Symmetry-Breaking Corrections

TRIUMF: Canada'sNational Laboratory forNuclear and ParticlePhysics Research

Measuring Superallowed Half Lives

Beam -

Cycle

□ ${}^{26}\text{Al}^{\text{m}}$: $T_{1/2} = 6.3465 \text{ s}$ □ ${}^{26}\text{Na}$: $T_{1/2} = 1.072 \text{ s}$ □ ${}^{26}\text{Al}^{\text{g}}$: $T_{1/2} = 7.4 \times 10^5 \text{ yrs}$

- Implant 6-14 s
- □ Allow ²⁶Na to decay 26-34 s
- Move tape to detector and count ²⁶Al^m decays for ~20, 25, 30 half-lives, then repeat.
- Change detector voltage, discriminator setting, and swap fixed, nonextendable dead times between two MCS units to investigate systematic effects.

2008 cycles spanning 51 runs

Assigning a systematic uncertainty

Comparison with previous results

P. Finlay et al., Phys. Rev. Lett. 106, 032501 (2011)

The 8π Spectrometer and SCEPTAR at ISAC-I

Branching Ratios for ²⁶Al^m Decay

Time (s)

Determining ²⁶Al^m non-analog intensity

Determining ²⁶Al^m non-analog intensity

Counts

Fit 1809 keV peak area vs. time with ²⁶Na and ²⁶Al^m components

Fit 1809 keV peak area vs. time with ²⁶Na and ²⁶Al^m components

Peak Area vs. Time

²⁶Al^m Non-Analog Branching Ratios

All measured BR consistent with zero

Total non-analogue decay:

5.5+/-6.5 ppm (peak area vs. time)

≤ 10 ppm @ 67% CL

≤ 15 ppm @ 90% CL

Direct feeding of 1809 keV:

-0.9+/-5.7 ppm (late time analysis)

≤ 5 ppm @ 67% CL ≤ 12 ppm @ 90% CL

 $100.0000 \pm^{0}_{0.0015}$

P. Finlay et al., Phys. Rev. C 85, 055501 (2012)

²⁶Al^m $\mathcal{F}t$ Value, Woods-Saxon δ_{C}

Based on J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)

²⁶Al^m $\mathcal{F}t$ Value, Hartree-Fock δ_{C}

Based on J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)

"Experimental" δ_{C}

$$\delta_C = 1 + \delta_{NS} - \frac{\mathcal{F}t\left({}^{26}\mathrm{Al}^m\right)}{ft\left(1 + \delta'_R\right)}$$

-Woods-Saxon δ_{C} continue to form an impressively consistent set

-Hartree-Fock δ_{C} do not exhibit the same degree of conformity

Hartree-Fock vs. Woods-Saxon and World-Averaged $\mathcal{F}t$

Hartree-Fock vs. Woods-Saxon and World-Averaged $\mathcal{F}t$

WS: 3073.0(12) s HF: 3069.0(19) s

 $\overline{\mathcal{F}t}$ (no ²⁶Al^m)

WS: 3072.0(10) s HF: 3072.3(10) s

Hartree-Fock vs. Woods-Saxon and World-Averaged $\mathcal{F}t$

 $\mathcal{F}t(^{26}\mathrm{Al^m})$

WS: 3073.0(12) s HF: 3069.0(19) s

 $\overline{\mathcal{F}t}$ (no ²⁶Al^m)

WS: 3072.0(10) s HF: 3072.3(10) s

 $\overline{\mathcal{F}t}$ (with ²⁶Al^m)

WS: 3072.38(75) s HF: 3071.59(87) s

> Systematic uncertainty = 0.79 s

Need to test superallowed corrections but independent of superallowed data!

Want to avoid assuing CVC

T=1/2 Mirror Nuclei

Mirror ft values at TRIUMF

Approved Experiments:

S1192 – Half-life and BR, ¹⁹Ne S1385 – Half-life for ²¹Na S1517 – Half-life and Q-value for ³⁵Ar

Mirror *ft* values at TRIUMF

Summary and Conclusions

• High-precision half-life and branching-ratio measurements for $^{26}\text{Al}^{\text{m}}$, carried out at TRIUMF, have resulted in the most precise superallowed ft and $\mathcal{F}t$ values for any superallowed emitter to date.

• This unrivaled precision for the ²⁶Al^m ft and $\mathcal{F}t$ values yields one of the most demanding consistency tests of leading isospin-symmetrybreaking corrections for these decays, required in order to extract V_{ud} , and currently a leading source of uncertainty.

Going forward, *ft*-value measurements for the isospin *T*=1/2 mirror nuclei offer an excellent opportunity to test and refine these calculations, with the goal of improving the uncertainty in Vud and further constraining physics beyond the Standard Model.

Acknowledgements

University of Guelph

G. Demand

P.E. Garrett

A.A. Phillips

E.T. Rand

C.E. Svensson

J. Wong

<u>NSCL/MSU</u> C.S. Sumithrarachchi S.J. Williams

<u>CERN</u>

S. Ettenauer

TRIUMF

- G.C. Ball
- D. Bandyopadhyay
- M. Djongolov
- S. Ettenauer
- G. Hackman
- K.G. Leach
- C.J. Pearson

GANIL

G.F. Grinyer

University of the Western Cape

S. Triambak

Queens University

J.R. Leslie

St. Mary's University

R.A.E. Austin

Simon Fraser University

C. Andreoiu

D. Cross

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The CKM matrix plays a central role in the Standard Model

describes the mixing of different quark generations: weak interaction eigenstates ≠ quark mass eigenstates

u	С	t
d	S	b

$$|d'\rangle = V_{ud}|d\rangle + V_{us}|s\rangle + V_{ub}|b\rangle$$

In the Standard Model the CKM matrix describes a unitary transformation.

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

1 17

The first row of the CKM matrix provides the most demanding experimental test of this unitarity condition.

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

 $|M_{fi}|^2 = (T - T_z)(T + T_z + 1) = 2$ (for T=1)

Vector coupling
$$\rightarrow G_V^2 = \frac{K}{2ft}$$
 $|V_{ud}| = G_V / G_F \leftarrow$ Fermi coupling constant

Superallowed *ft*-values

J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)

Counting the number of **β** particles

SCEPTAR Efficiency

Deposited energy threshold (keV)

Other Potential ²⁶Al^m Branches

Transitions to other excited states dominated by EC, so beta-anticoincidence gamma-ray data used in this analysis at late times in the cycle.

Level	γ ray	Peak area
(J^{π}, E)	(keV)	(ppm)
$3_1^+, 3942 \text{ keV}$	1003	11(12)
	2133	-10(6)
$0^+_1, 3589 \text{ keV}$	1780	-12(25)
$2^+_2, 2938 \text{ keV}$	1130	3(10)
	2938	4(6)
$5^+, {}^{26}\text{Al}^g$	228	3(15)

The Radial Overlap Correction: δ_{C2}

Z-dependence in Radial Overlap Correction

The Resulting Precision in G_V

Prior to this work:
$$G_V^2 = \frac{K}{2(1 + \Delta_R^V)\overline{\mathcal{F}t}}$$
,
 $G_V^2/(\hbar c)^6 = 1.29126(33)_{\text{stat.}}(11)_{\delta_C}(48)_{\Delta_R^V} \times 10^{-10} \text{ GeV}^{-4}$,
 $G_V/(\hbar c)^3 = 1.13633(15)_{\text{stat.}}(5)_{\delta_C}(21)_{\Delta_R^V} \times 10^{-5} \text{ GeV}^{-2}$,
 $= 1.13633(26) \times 10^{-5} \text{ GeV}^{-2}$.

Following this work:

$$G_V^2/(\hbar c)^6 = 1.29118(32)_{\overline{\mathcal{F}t_{\text{stat.}}}}(17)_{\overline{\mathcal{F}t_{\text{syst.}}}}(48)_{\Delta_R^V} \times 10^{-10} \text{ GeV}^{-4}$$
$$G_V/(\hbar c)^3 = 1.13630(14)_{\overline{\mathcal{F}t_{\text{stat}}}}(8)_{\overline{\mathcal{F}t_{\text{syst}}}}(21)_{\Delta_R^V} \times 10^{-5} \text{ GeV}^{-2} ,$$
$$= 1.13630(27) \times 10^{-5} \text{ GeV}^{-2}$$