ATLAS searches for the Higgs Boson CAP Congress 2014

Doug Schouten on behalf of the ATLAS Collaboration

17-06-2014

Introduction

- diverse phenomology in SM Higgs sector ⇒ many probes for BSM physics
- measurements of rare production and decay modes starting to be realized, will be very important in LHC Run II

Figure: cross-section for gg-fusion, VBF, associated (WH, ZH) and ttH production (left, largest to smallest) and branching ratios for largest Higgs decay modes (right).

Outline

- this presentation will focus on new ATLAS results since [1] (i.e., those published after CAP 2013)
 - updates and new results are denoted with
- impressive collection of measurements have been completed & updated:
 - 1 "bread and butter" di-boson channels: $\gamma\gamma$, $ZZ \rightarrow 4\ell$, $H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$
 - **2** fermionic decay: $H \rightarrow \tau \tau$
 - 3 $ttH(\rightarrow \gamma\gamma, bb)$
 - **4** associated production $WH(\rightarrow bb, WW^{(*)})$
 - 5 rare decay modes: $\mu\mu$ and $Z\gamma$
- could spend $\frac{1}{2}$ hour on each of these individually ...

Further references:

- Higgs boson production and couplings in diboson final states: arXiv:1307.1427
- Compendium of ATLAS Higgs Public Results: link

Detector Overview

Event Reconstruction

- collected 4.7 fb⁻¹ in 2011 @ 7 TeV center-of-mass, 20.7 fb⁻¹ in 2012 @ 8 TeV
- sophisticated methods to measure final states in collision events within a very noisy environment

Leptons

• muons from matched tracks in muon spectrometer (MS) to inner tracker (use only MS in $2.5 < |\eta| < 2.7$)

 \blacksquare calorimeter-tagged and standalone used in $ZZ \to 4\ell$

- electrons reconstructed from tracks matched to clusters
 - select based on cluster shapes in electromagnetic (EM) calorimeter, hadronic leakage
- 1 & 3-prong hadronic τ decays identified with BDT @ 55% efficiency, rejection of jets is O(10²)

Event Reconstruction

- collected 4.7 fb⁻¹ in 2011 @ 7 TeV center-of-mass, 20.7 fb⁻¹ in 2012 @ 8 TeV
- sophisticated methods to measure final states in collision events within a very noisy environment

Leptons

 \blacksquare muons from matched tracks in muon spectrometer (MS) to inner tracker (use only MS in $2.5 < |\eta| < 2.7)$

 \blacksquare calorimeter-tagged and standalone used in $ZZ \to 4\ell$

- electrons reconstructed from tracks matched to clusters
 - select based on cluster shapes in electromagnetic (EM) calorimeter, hadronic leakage
- \blacksquare 1 & 3-prong hadronic τ decays identified with BDT @ 55% efficiency, rejection of jets is O($10^2)$

Event Reconstruction

Photons

- isolated EM clusters, identified using shower shape variables
- converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilised

Event Reconstruction

Photons

- isolated EM clusters, identified using shower shape variables
- converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilised

Jets

- built from noise-suppressed clusters with R = 0.4 anti- k_T algorithm
- $p_T > 25$ (30) GeV in central (forward) region, track/vertex matching suppresses pileup jets
- \blacksquare correct for pileup using N_{PV} and event energy density $\rho,$ jet area A
- NN b-tagging using impact parameter and secondary vertex

Event Reconstruction

Photons

- isolated EM clusters, identified using shower shape variables
- converted (two matched tracks, or single with no inner layer hit) and un-converted photon categories utilised

Jets

- built from noise-suppressed clusters with R = 0.4 anti- k_T algorithm
- $p_T > 25$ (30) GeV in central (forward) region, track/vertex matching suppresses pileup jets
- \blacksquare correct for pileup using N_{PV} and event energy density $\rho,$ jet area A
- NN b-tagging using impact parameter and secondary vertex

$E_{\rm T}^{\rm miss}$

- vectoral sum of reconstructed leptons, photons, jets
 - include calorimeter cells in clusters not included in reconstruced objects
- **a** also calculate \mathbf{p}_T^{miss} using tracks

Di-boson Channels: $\gamma\gamma, ZZ \rightarrow 4\ell, WW^{(*)} \rightarrow \ell\nu\ell\nu$

	$\frac{\text{central}}{(\eta < 0.75)}$		transition $(1.3 < \eta < 1.75)$	$\begin{array}{c} \text{other} \\ (0.75 < \eta < 1.3, 1.75 < \eta < 2 \end{array}$		her $1.75 < \eta < 2.37$)	
≥ 1 conversions	$p_{T,t} < 60$	$p_{T,t} > 60$	all $p_{T,t}$	$p_{T,t} < 60$		$p_{T,t} > 60$	
unconverted	$p_{T,t} < 60$	$p_{T,t} > 60$	$p_{T,t} < 60$		$p_{T,t} > 60$		

 $H \to \gamma \gamma$

 $H\to\gamma\gamma$

Signal Yield

• background from fits in $m_{\gamma\gamma}$ sidebands

• dominant uncertainty on signal yield reduced by factor of four, to $\sim 2\%$

 $H \rightarrow \gamma \gamma$

Signal Yield

- background from fits in $m_{\gamma\gamma}$ sidebands
- dominant uncertainty on signal yield reduced by factor of four, to $\sim 2\%$

Category	N_D	N_B	N_S	ggF	VBF	WH	ZH	$t\bar{t}H$
Untagged	13931	13202	350	320	19	7.0	4.2	1.0
Loose high-mass two-jet	41	28	5.0	2.3	2.7	< 0.1	< 0.1	< 0.1
Tight high-mass two-jet	23	13	7.7	1.8	5.9	< 0.1	< 0.1	< 0.1
Low-mass two-jet	19	21	3.1	1.5	< 0.1	0.92	0.54	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ significance	8	4	1.2	< 0.1	< 0.1	0.43	0.57	0.14
Lepton	20	12	2.7	< 0.1	< 0.1	1.7	0.41	0.50
All categories (inclusive)	14025	13280	370	330	27	10	5.8	1.7

 \blacksquare combined observed $~Z_0=7.4\sigma$, compared to 4.3 σ expected

discovery-level signal in just this channel

 $H \to ZZ \to 4\ell$

Sample Selection

 $[^]a$ Note: $m_{\sf min}$ ranges from 12 to 50 depending on $m_{4\ell}$, select one with minimal $|m_{34}-m_Z|$

Background & Signal Yield

- use NLO simulation for irreducible background ZZ
- $\ell\ell + \mu\mu$: non-isolated muon sample for Z + bb and $t\bar{t}$ backgrounds^a
- \blacksquare relax electron cuts to determine $\ell\ell + ee$ fakes background

 $^{^{}a}$ fit m_{12} distribution

 $H \to ZZ \to 4\ell$

Background & Signal Yield

- use NLO simulation for irreducible background ZZ
- $\ell\ell + \mu\mu$: non-isolated muon sample for Z + bb and $t\bar{t}$ backgrounds^a
- \blacksquare relax electron cuts to determine $\ell\ell + ee$ fakes background
- largest uncertainties on fitted signal arise from electron efficiencies and Z + bb background estimate

maximal deviation is
$$Z_0 = 6.6\sigma$$
 (4.4 σ expected) at $m_H = 124.3$ GeV

also clear signal in just this channel

	Signal	ZZ^*	$Z+{\rm jets},\ t\bar{t}$	Observed
4μ	6.3±0.8	$2.8{\pm}0.1$	$0.55{\pm}0.15$	13
$2e2\mu/2\mu2e$	$7.0{\pm}0.6$	$3.5{\pm}0.1$	$2.11{\pm}0.37$	13
4e	$2.6{\pm}0.4$	$1.2{\pm}0.1$	$1.11{\pm}0.28$	6

 $^{^{}a}$ fit m_{12} distribution

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Sample Selection

- select two leptons with $p_T > 25/15$ GeV
- complicated channel in terms of background composition, and has poor mass resolution

 $H \to WW \to \ell \nu \ell \nu$

Sample Selection

- select two leptons with $p_T > 25/15$ GeV
- complicated channel in terms of background composition, and has poor mass resolution

- exploit spin-0 nature with $\Delta \phi_{\ell\ell} < 1.8$, $m_{\ell\ell} < 50$ cuts
- $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 |\mathbf{p}_T^{miss} + \mathbf{E}_T^{miss}|^2}$ is discriminating variable in all channels

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

$\label{eq:states} \begin{array}{l} \hline {\bf Process} \\ \overline{Z^{(*)}Z^{(*)} \rightarrow 4l} \\ W(Z/\gamma^*), \ W\gamma \\ \overline{WW} \\ t\overline{t} \\ single top \\ Z/\gamma^* \ (+ \ jets) \\ W+jets \end{array}$

Background Estimation

Legend:

- prediction from simulation
- validated in data sample
- normalised in data sample
- derived from data

 $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

Process
$Z^{(*)}Z^{(*)} \to 4l$
$W(Z/\gamma^*), \ W\gamma$
WW
$t\overline{t}$
single top
Z/γ^* (+ jets)
W+jets

Background Estimation

Legend:

- prediction from simulation
- validated in data sample
- normalised in data sample
- derived from data

■ *W*+jets background is estimated using events in which exactly one lepton is "anti-identified"

 $H \to WW \to \ell \nu \ell \nu$

Process
$Z^{(*)}Z^{(*)} \to 4l$
$W(Z/\gamma^*), W\gamma$
WW
$t\overline{t}$
single top
Z/γ^{*} (+ jets)
W+jets

Background Estimation

Legend:

- prediction from simulation
- validated in data sample
- normalised in data sample
- derived from data

- *W*+jets background is estimated using events in which exactly one lepton is "anti-identified"
- top background is constrained with jet veto rate (0-jet) or single b-tag sample (1/2-jet)

 $H \to WW \to \ell \nu \ell \nu$

- W+jets background is estimated using events in which exactly one lepton is "anti-identified"
- top background is constrained with jet veto rate (0-jet) or single b-tag sample (1/2-jet)
- dominant *WW* continuum background is fixed in a control sample $m_{\ell\ell} \in [50, 100]$ GeV (0-jet), $m_{\ell\ell} > 80$ GeV (1-jet),

 $H \to WW \to \ell \nu \ell \nu$

- W+jets background is estimated using events in which exactly one lepton is "anti-identified"
- top background is constrained with jet veto rate (0-jet) or single b-tag sample (1/2-jet)
- dominant *WW* continuum background is fixed in a control sample $m_{\ell\ell} \in [50, 100]$ GeV (0-jet), $m_{\ell\ell} > 80$ GeV (1-jet),
- $\blacksquare\ Z/\gamma^*$ yield in $ee/\mu\mu$ channels is estimated using efficiency measurements in m_Z window

 $H \to WW \to \ell \nu \ell \nu$

Signal Yield

- largest systematic uncertainties are theoretical (QCD scale, parton shower modeling)
 - dominant experimental uncertainty is jet energy scale/resolution, b-tagging

	$N_j = 0$	$N_j = 1$	$N_j \ge 2$	
Observed	831	309	55	
Signal	100 ± 21	41 ± 14	10.9 ± 1.4	
Total background	739 ± 39	261 ± 28	36 ± 4	
WW	551: 41	108: 40	4.1: 1.5	
Other VV	58 ± 8	27 ± 6	1.9 ± 0.4	
Top-quark	39 ± 5	95: 28	5.4: 2.1	
Z+jets	30: 10	12: 6	22: 3	
W+jets	61: 21	20: 5	0.7: 0.2	

 $H \to WW \to \ell \nu \ell \nu$

Signal Yield

- largest systematic uncertainties are theoretical (QCD scale, parton shower modeling)
 - dominant experimental uncertainty is jet energy scale/resolution, b-tagging

	$N_j = 0$	$N_j = 1$	$N_j \ge 2$	
Observed	831	309	55	
Signal	100 ± 21	41 ± 14	10.9 ± 1.4	
Total background	739 ± 39	261 ± 28	36 ± 4	
WW	551: 41	108: 40	4.1: 1.5	
Other VV	58 ± 8	27 ± 6	1.9 ± 0.4	
Top-quark	39 ± 5	95: 28	5.4: 2.1	
Z+jets	30: 10	12: 6	22: 3	
W+jets	61: 21	20: 5	0.7: 0.2	

• maximal observed Z_0 is 4.1 σ for $m_H = 140$ GeV

• at
$$m_H = 125$$
 GeV, $Z_0 = 3.8\sigma$ (obs. & exp.)

Mass

Mass Measurement

Submitted to PRD

- \blacksquare mass measurement is performed in $ZZ \to 4\ell$ and $\gamma\gamma$ channels
- \blacksquare allow the signal strengths $\mu_{4\ell},\ \mu_{\gamma\gamma}$ to float
 - best overall $m_H = 125.4 \pm 0.37 \, ({\rm stat}) \pm 0.18 \, ({\rm sys})$ GeV

Mass

Mass Measurement

Submitted to PRD

- \blacksquare mass measurement is performed in $ZZ \to 4\ell$ and $\gamma\gamma$ channels
- \blacksquare allow the signal strengths $\mu_{4\ell}\text{, }\mu_{\gamma\gamma}$ to float
 - best overall $m_H = 125.4 \pm 0.37 \, (\text{stat}) \pm 0.18 \, (\text{sys})$ GeV
- \blacksquare consistency of $\gamma\gamma$ and ZZ masses is at the 4.8% level

$$\Delta m_H = 1.47 \text{ GeV}$$

- many cross-checks performed, dedicated sub-group
- investigate systematics on e/γ scales with $Z, Z\gamma, J/\psi$ samples
- improved γ , electron, μ calibrations

Rate

Combined Rate

- use best-fit mass hypothesis $m_H = 125.5$ GeV maximum likelihood fit
- $\mu = 1.33 \pm 0.14 \, (\text{stat}) \pm 0.15 (\text{sys})$
 - consistent with SM $\mu = 1$ at \sim 7% level
 - largest deviation in $H \rightarrow \gamma \gamma$ at 1.9σ

Rate

Combined Rate

ATLAS + σ(stat) Total uncertainty • use best-fit mass hypothesis $m_H = 125.5$ σ(svs) m_H = 125.5 GeV ± 1σ on μ σ(theo) GeV maximum likelihood fit ±0.23 $H \rightarrow \gamma \gamma$ ±0.15 $\mu = 1.33 \pm 0.14$ (stat) ± 0.15 (sys) $\mu = 1.55^{+0.33}$ +0.1 Low p_ = 1.6 ±0.3 • consistent with SM $\mu = 1$ at $\sim 7\%$ level High p_ ±0.5 Iargest deviation in $H \rightarrow \gamma \gamma$ at 1.9σ 2 iet high = 1.9 ±0.6 mass (VBF) VH categories µ = 1.3^{+1.2} ±0.9 $\mu_{VBF+VH} \times B/B_{SM}$ ±0.33 ATLAS $H \rightarrow ZZ^* \rightarrow 4I$ √s = 7 TeV Ldt = 4.6-4.8 fb⁻¹ √s = 8 TeV JLdt = 20.7 fb VBF+VH-like = 1.2^{+1.6}_{-0.9} +16 - 0.9 categories $-H \rightarrow \gamma\gamma$ 6 Other $\mu = 1.45^{+0.43}_{-0.36}$ H ---- 77* ---- 4 ±0.35 categories $-H \rightarrow WW^* \rightarrow hhr$ $H \rightarrow WW^* \rightarrow l_V l_V$ ±0.21 + Standard Model × Best fit ±0.21 $\mu = 0.99^{+0.31}$ - 68% CL +0.12 -- 95% CI $\mu = 0.82^{+0.33}$ 0+1 iet ±0.22 -0.32 0 $\mu = 1.4^{+0.7}_{-0.6}$ 2 jet VBF ±0.5 125 5 GeV Comb. H→γγ, ZZ*, WW* 2.5 3.5 1.5 3 $\mu_{qqF+ttH} \times B/B_{SM}$ √s = 7 TeV Ldt = 4.6-4.8 fb⁻¹ s = 8 TeV Ldt = 20.7 fb⁻¹ Signal strength (µ) • evidence for VBF production at 3.3σ level • best-fit VBF to ggF+ttH ratio is $1.4^{+0.4}_{-0.3}$ (stat) $^{+0.6}_{-0.4}$ (sys)

Fermionic Production and Decay Modes

 $H{\rightarrow}\,\tau\tau$

Ref: http://cds.cern.ch/record/1632191

 $\blacksquare \ H \! \to \! \tau \tau$ is the only fermionic decay channel with strong experimental evidence

adds important contraints on Yukawa coupling

Ref: http://cds.cern.ch/record/1632191

 $\blacksquare \ H \! \to \! \tau \tau$ is the only fermionic decay channel with strong experimental evidence

adds important contraints on Yukawa coupling

 \blacksquare diverse backgrounds for each of the τ decay combinations

necessitates heavy usage of MVA techniques

- τ triggering
- discrimination of abundant background processes
- \blacksquare separate $\ell\ell$, $\ell\tau_{\rm had},$ and $\tau_{\rm had}\tau_{\rm had}$ channels
- use two categories with improved S/B: VBF-like (large $m_{jj}, \Delta \eta_{jj}$) and boosted ggF (large $p_T^{\tau\tau}$)

 $H \rightarrow \tau \tau$

BDT

dedicated BDT for each decay channel in boosted & VBF categories

backgrounds

- $\label{eq:constraint} \begin{array}{l} \mathbf{Z} \to \tau \tau \text{ background modeled using novel "embedding" technique} \\ \\ \mathbf{I} \text{ simulated } \tau \text{ decays replace } \mu \text{ in } Z \to \mu \mu \text{ data sample} \end{array}$
- $t\bar{t}$ background is constrained using *b*-tagged control sample
- $\blacksquare W+{\rm jet}({\rm s})$ is estimated using a fake factor for ${\rm jets} \to \tau$ determined in data

 $H \rightarrow \tau \tau$

BDT

dedicated BDT for each decay channel in boosted & VBF categories

backgrounds

- $Z \rightarrow \tau \tau$ background modeled using novel "embedding" technique ■ simulated τ decays replace μ in $Z \rightarrow \mu \mu$ data sample
- $t\bar{t}$ background is constrained using *b*-tagged control sample
- W+jet(s) is estimated using a fake factor for jets $\rightarrow \tau$ determined in data

Fermionic Modes

 $H{\rightarrow}\,\tau\tau$

$H \rightarrow \tau \tau$ **Results**

. م ©

Р

fully consistent with SM (©

 $ttH(\rightarrow bb)$

Ref: http://cds.cern.ch/record/1670532

- very interesting b/c production & decay are via fermion couplings
- ... but very challenging because of small signal and huge $t\bar{t}$ background
- considered semi-leptonic and dilepton $t\bar{t}$ signatures
 - \blacksquare sub-divide into jet and b-tag multiplicities for control samples and enhanced S/B
- utilize neural network to discriminate background and ttH signal

 $ttH(\rightarrow bb)$

Results

Summary

W/ZH

Final Remarks

complex Higgs searches and measurements in many final states

- enhance different production modes
- sensitivity to fermion, gauge boson couplings
- Run I @ ATLAS has been very successful
- many interesting advances expected for Run II
 - couplings at few % level
 - new decay channels
 - high mass reach for 2HDM, SUSY, other BSM

 Canadian collaborators are leading the way in detector design & construction, theory, analysis and physics interpretation

Thank you for your attention!

Extra Material

Extra Material

Note on $\gamma\gamma$ Vertexing

- use fine calorimeter granularity to "point" back to production vertex
 - utilise vertex for converted photons
- combine in neural network with

 - $\begin{array}{l} \bullet ~~ \sum p_T^2 ~(\text{8 TeV analysis}) \\ \bullet ~~ \sum p_T, ~\Delta \phi(\gamma\gamma, ~\mathbf{p}_T) ~(\text{7 TeV analysis}) \end{array}$
- vertexing performance from $Z \rightarrow ee$ events by removing electron tracks

Extra Material

$H \rightarrow \tau \tau \text{ BDT}$

Variable	VBF			Boosted			
Variable	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$	$\tau_{lep}\tau_{lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$	
$m_{\tau\tau}^{MMC}$	•	•	•	•	•	•	
$\Delta R(\tau, \tau)$	•	•	•		•	•	
$\Delta \eta(j_1, j_2)$	•	•	•				
m_{j_1,j_2}	•	•	•				
$\eta_{j_1} \times \eta_{j_2}$		•	•				
p_{T}^{Total}		•	•				
sum $p_{\rm T}$					•	•	
$p_{T}(\tau_{1})/p_{T}(\tau_{2})$					•	•	
$E_{\mathrm{T}}^{\mathrm{miss}}\phi$ centrality		•	•	•	•	•	
$x_{\tau 1}$ and $x_{\tau 2}$						•	
$m_{\tau\tau,j_1}$				•			
m_{ℓ_1,ℓ_2}				•			
$\Delta \phi_{\ell_1,\ell_2}$				•			
sphericity				•			
$p_T^{\ell_1}$				•			
$p_{T}^{j_{1}}$				•			
$E_T^{\text{miss}}/p_T^{\ell_2}$				•			
$m_{\rm T}$		•			•		
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•						
$j_3 \eta$ centrality	•						
$\ell_1 \times \ell_2 \eta$ centrality	•						
$\ell \eta$ centrality		•					
$\tau_{1,2} \eta$ centrality			•				