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Overview	



•  The raw CDMS data 

•  Customized data acquisition hardware
—DCRCs 

•  DAQ decisions for the later data 
analysis 

•  The DAQ’s role in neutron discrimination 

•  High rate Barium calibrations and the 
need for an efficient DAQ architecture  



A Single Event	



Charge Pulses: 

Phonon Pulses: 
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Detector Control and Readout Cards 

•  one card per detector 

•  continuously digitizing signal from 
phonon/charge channels 

•  zero-deadtime acquisition 

•  records trigger time stamps  

DCRCs	
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DCRCs	


Detector Control and Readout Cards 

•  continuously digitizing signal from   
phonon/charge channels 

•  records trigger time stamps  
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The Waveforms	



ms	
  52	
  

What Length? 
•  phonon pulses are ~1 ms 
•  monitor low frequency 

noise (~50ms) 

What Sample Rate (resolution)? 
•  phonon pulse rise times are 

~10μs 

Tradeoffs: 
1.  high resolution phonon pulses 
2.  filtering low frequency noise 
3.  reasonable event data size   
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ms	
  sample rate = 40kHz 	

 40kHz 	

625kHz 	



Hybrid Sampling with 52ms waveforms 
•  good resolution near pulse (can see ~10μs features) 
•  distinguish low frequency noise (down to 20Hz) 
•  reduced data throughput (141kB per event)      

The Waveforms	



52	
  

What Length? 
•  phonon pulses are ~1 ms 
•  low frequency noise 

What Sample Rate (resolution)? 
•  phonon pulse rise times are 

~10μs 
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1.  WIMP Search (Low Background) 
• 90% of run time 
•  low interaction rate of alphas, betas, 

gammas, and neutrons  

2. Calibration 
•  radioactive Ba source for electron recoils 
•  radioactive Cf source for nuclear recoils  

Running Modes	
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Low Background and Neutron Discrimination	



5/12/2014 - Latest Results in Dark Matter Searches - Jodi Cooley

Backgrounds'to'Eliminate'
Bulk%electron%recoils%=%%

Compton'background'and'1.3'keV'
ac5va5on'line''

sidewall%%&%surface%events'=%%
betas'and'xHrays'from'210Pb,'210Bi,'
recoils'from'206Pb,'outer'radial'

comptons'and'ejected'electrons'from'
compton'scafering'

Cosmogenic%&%radiogenic%
neutrons%

nuclear recoils!

Ephonon!

E
io

n
iz

at
io

n
!

Use)division)of)energy)
between)inner)and)outer)
sensors,)“radial)par00on”)

Use)division)of)energy)
between)sides)1)and)2,)
“zKpar00on”)

UCLA'February'2014' 5'

Ioniza0on)vs)phonon)
dis0nguishes)NR)
from)bulk)ER)

Use)ac0ve)and)passive)
shielding.))Simula0on)
determines)remaining)
irreducible)rate)SuperCDMS'

Muon'veto''

for)modeling)210Pb)bg)in)Geant4,)see)P.)Redl’s)talk)

Background Sources
Bulk Electron Recoils:!

- Compton background and 1.3 keV activation 
line!

- Use ionization and phonon energy to 
discriminate NR from bulk ER

Sidewall and Surface Events:!
- betas and x-rays from 210Pb, 210Bi, 206Pb recoils, 

outer radial Compton background and ejected 
electrons from Compton scattering!

- Use division of energy between inner and outer 
electrodes AND division of energy between 
 sides 1 and 2.

Cosmogenic and Radiogenic Neutrons:!
Use active and passive shielding to eliminate AND the fact that neutrons tend to 
scatter in multiple detectors.
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Neutron Background 
•  cosmogenic: muons scattering in cavern 

•  radiogenic: Uranium and Thorium 
contamination 

•  indistinguishable from WIMPs  
Projected Backgrounds 
Years 5 

Exposure 400 kg-year 

Neutron (cosm.) 0.008 events 

Neutron (rad.) 0.04 events 

Other Bkg. 0.20 events 

Enectali Figueroa-Feliciano / Sackler Debates / May 2014

iZIP Detectors: Electron Recoil Discrimination

Electron recoil / nuclear recoil discrimination possible with 
simultaneous measurement of ionization and phonons

133Ba 
calibration γ

252Cf 
calibration n

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Recoil Energy [keVr]

Io
ni

za
tio

n 
Yi

el
d

133Ba

surface events

Yield =

Charge

Phonons

DAQ plays important role in achieving low neutron background 
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Shielding/Veto: 
•  active neutron veto 
•  polyethylene moderator 
Analysis Rejection: 
•  cut on coincident scatters 

(80% of neutrons coincident 
scatter) 

What if second scatter is below the 
DCRC threshold? 

Full Readout Mode 
•  last line of defense  
•  readout every detector on every 

trigger 
•  100 times data throughput 
•  only necessary if electronic 

noise requires a higher trigger 
threshold 

Low Background and Neutron Discrimination	



CDMS II 2keV trigger threshold	





  

Self-indulgent violation of Dan's 
slide limit guideline

Real physics pulses with MIDAS from UMN (4 of 12 channels shown)
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2.4 ms•  maximize calibration data and  
minimize time 

•  piled-up events spoil each 
other 

•  tradeoff between events and 
usable events 

•  52ms of pileup-free waveforms 
means 20Hz event rate 

Barium Calibration Pileup	



Re�(R)�t

�t = 52 ms
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Barium Calibration Pileup	



Event 
Rate 
(Hz) 

Usable 
Events 
(Hz) 

75  1 

20 7 

Usable Event 
Criteria: 
•  52ms pileup-free 

waveforms 
•  26ms prepulse  
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Barium Calibration Pileup	



The DAQ must reject 
piled-up triggers 

Event 
Rate 
(Hz) 

Usable 
Events 
(Hz) 

75  1 

20 7 

Usable Event 
Criteria: 
•  52ms pileup-free 

waveforms 
•  26ms prepulse  



Front End Programs use 2 stage reading process 
•  read in trigger time stamps (1) 
•  make efficient trigger decisions 
•  read waveforms of usable events (2) 

SuperCDMS SNOLAB Data Acquisition	
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7 Hz, 141kB events, ~100 detectors 

Barium Calibration Pileup	



TIME STAMPS	



100 MB/s  )

(1) 

(2) 
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Conclusion	



•  DCRCs digitize data in circular buffer 

•  zero-dead time acquisition 

•  DCRC trigger time stamp memory buffer for trigger decisions  

•  long waveforms (52ms) for filtering low frequency noise 

•  hybrid sampling rate for reducing data throughput  

•  full readout option for neutron discrimination 

•  optimal Barium calibration event rate with efficient real-time pileup 
rejection   


