DEAP-3600

2014 CAP Conference

Pietro Giampa Queen's University

DEAP-3600 Resurfacer Underground Deployment and Testing

- 1) DEAP-3600
- 2) Background Reduction
- 3) Resurfacer Concept
- 4) Gas Purge System
- 5) Current Status @ SNOLAB
- 6) Final Goals
- 7) Conclusions

Collaboration

Science & Technology Facilities Council Rutherford Appleton Laboratory

Pietro Giampa

3/15

DEAP-3600

Experiment

- Single Phase LAr Detector.
- Ar allows for great pulse-shape discrimination
- 255 PMTs, R5912 HQE 8".
- 3.6T of LAr, 1T of Fiducial Volume.
- Sensitivity of 10⁻⁴⁶ cm² (SI) for 100 GeV WIMP.

Pietro Giampa

Background Reduction

- The acrylic used for the AV was carefully fabricated in a low Rn environment, with a control to <10⁻²⁰ g/g ²¹⁰Pb from Rn exposure.
- The ultimate goal for the resurfacer is to remove 1mm of acrylic from the inner vessel.
- 210 Pb < 10^{-19} g/g, resulting in 0.05 events/3 years.
- To achieve that were extra careful with all the materials used for the resurfacer, to make sure no extra radioactive backgrounds are introduced. We performed a Rn emanation test on all the component materials (very methodical).

Few Examples From the Actual Table

20-06-2014

Component	Date of Measurements	Measured Rn Rate	Rn Decay Rate in AV	Scale Factor
Small Bearings	Dec, 9 2012	0.04+/-0.04 mBq	0.41+/-0.41 mBq	11
3/8" UPW Hose	Sep, 4 2012	0.24+/-0.07 mBq	2.94+/-0.82 mBq	12
Teflon Lip Seal	Feb, 12 2013	0.27+/-0.02 mBq	0.27+/-0.02 mBq	5

Few examples from the Rn emanation tables for the Resurfacer components, table includes results from more than 60 different components.

Pietro Giampa

DEAP-3600

Pietro Giampa

Pietro Giampa

DEAP-3600

Pietro Giampa

http://www.sciencedirect.com/science/article/pii/S0168900204023356

Pietro Giampa

9/15

2

Gas Purge System

Apparatus

	Heater + LN2 Controller	Level LN2 rs Inle	Fill LN2 Leve et Probe					
				Voltage [V]	Heater Power [W]	Evap. Rate [Kg/Hr]	Run Time [Days]	
				5	8.33	0.1895	40.2	
				15	75.0	1.3956	4.3	
				30	300	4.3761	1.7	
200L		Purified N2 Outlet	Relief Valve (10psi)	Table 1: Display of the flushing rate of ultra- purified N2 from the dewar and the running time (from full fill) of the dewar based on the set power of the dewar.				
Dewar							Purified N2 N2	
	Heater 3Ω		Activa	ated Charc	oal Trap			

Pietro Giampa

DEAP-3600

Current Status @ SNOLAB

Pietro Giampa

DEAP-3600

20-06-2014

Current Status @ SNOLAB

Resurfacer fully secured onto the deployment frame.

Placed the resurfacer in its deployment frame. Started preparing all the internal hosing for the inlet and outlet UPW and all electrical wiring.

Pietro Giampa

DEAP-3600

Current Status @ SNOLAB

Finished Rotating Coupling Head

Finished setting up the rotating coupling head. Currently testing the Resurfacer response to compare it with sanding results obtained at Queen's University. Test is performed on two plates that are made of the same acrylic used for the AV.

Pietro Giampa

Final Goals

- Finishing testing all Resurfacer features. (end of June)
- Deploy Resurfacer inside the AV. (end of June/beginning of July)
- Start running Resurfacer. (July)
- Sanding till we remove 1 mm of Acrylic from the AV. (analyzing the sanded acrylic as we are sanding along)

Pietro Giampa

55.6 s

6288.1 ke\

²¹⁶P0 0.15 s

α

6002.4keV

²¹²Pb 10.64 h 3.05 m

²¹⁴Pb

26.8 m

²¹²Bi

~m

6050.8 ke

6089.8 ke

²⁰⁸TI

²¹⁴Bi

19.9 m

²¹²Po

300 ns

α

8784.4 keV

²⁰⁸Pb

²¹⁰Pb

22.3 a

²¹⁰Bi

5.01 d

²¹⁰Po

138.3 d

²⁰⁶Pb stable

Conclusions

- 1) We introduced the concept of the resurfacer and how resurfacing is handled for the DEAP-3600 experiment.
- 2) We discussed the complementary ultra-purified nitrogen gas system.
- 3) We elaborated how the resurfacer comes into play for background reduction.
- 4) We gave an update of the current status at SNOLAB
- 5) Defined the goals.