Search for resonant VH production with a W or Z boson decaying leptonically

Frédérick Dallaire

CAP Congress 17 juin 2014

mardi 17 juin 2014

Motivations

- Higgs discovery : Strong constraint on BSM theories
 - is SM valid at the TeV scale?
- Dynamical electroweak symmetry breaking scenarios
 - new strong interactions
 - new resonances that couple to W, Z and Higgs
 - Minimal Walking Technicolor, Little Higgs, Composite Higgs, ...

• Previous CONF note <u>ATL-CONF-2013-074</u>

Analysis is still blinded, no results available yet :(

Minimal Walking Technicolor

- Search for resonant dijet in associated production with a vector boson
 - final states : 0, 1 and 2 leptons
 - electron and muon channel
- 20.3 fb⁻¹ of data collected by the ATLAS detector
- Test of Minimal Walking Technicolor (MWT) model
 - Composite Higgs model based on Walking Technicolor
 - Agrees with EW precision measurements (Sparameter ~0.3)
 - New resonances : R₁ and R₂
 - gtilde : coupling constant to SM particles
 - $\sim \tilde{g}$: mesons-bosons, \sim g/ \tilde{g} : mesons-fermions
 - M_A : mass scale (sets mass for R₁ and R₂)

F. Sannino *et al* <u>0809.0793</u>

Heavy Vector Triplet

- Interpretation in Heavy Vector Triplet models
 - new heavy vector couples to SM particles
 - $g_V c_H$: Higgs and gauge bosons
 - $g^2 c_F/g_V$: SM fermions
 - Two benchmark models
 - Model A : extension of the SM gauge group (weakly coupled)
 - Model B : Composite Higgs model (strongly coupled)
 - fermionic couplings suppressed

$$ig_{V}c_{H}V_{\mu}^{a}H^{\dagger}\tau^{a}\ddot{D}^{\mu}H$$

$$V_{\mu}$$
by Equivalence Theorem
$$\pi = W_{L}, Z_{L}, H$$

$$\frac{g^{2}}{g_{V}}c_{F}V_{\mu}^{a}J_{F}^{\mu a}$$

$$c_{F} \rightarrow \{c_{l}, c_{q}, c_{3}\}$$

$$V_{\mu}$$

$$V_{\mu}$$

$$V_{\mu}$$

$$V_{\mu}$$

$$V_{\mu}$$

R. Torre *et al.* <u>1402.4431</u>

 $\pi = W_L, Z_L, H$

Leptons

Follow Higgs group working on associated production VH **Signal electron** K Loose electron ZH signal electron WH signal electron Cut Author = 1 or 3Algorithm Author = 1 or 3Author = 1 or 3VeryLoose Likelihood e-ID VeryLoose Likelihood VeryTight Likelihood $|\eta_{clus}| < 2.47$ η_{clus} range $|\eta_{clus}| < 2.47$ $|\eta_{clus}| < 2.47$ 7 GeV 25 GeV 25 GeV E_T range track Isolation cone 0.2 sum pT tracks/pT < 0.1 sum pT tracks/pT < 0.1sum pT tracks/pT < 0.04 calo isolation cone 0.3 topoEtcone30/ET < 0.04OQ cut **Object Cleaning** OQ cut OQ cut

Section 2017 Secti

Cut		Loose Muon		ZH muon selection	WH muon selection
Туре	Combined/ST	Standalone	Calo	Combined/ST	Combined/ST
ID Track Cuts	passMCP	none	passMCP	passMCP	passMCP
d_0	$ d_0 < 0.1 \text{ mm}$	none	$ d_0 < 0.1 \text{ mm}$	$ d_0 < 0.1 \text{ mm}$	$ d_0 < 0.1 \text{ mm}$
Z_0	$Z_0 - Z_{vtx} < 10 \text{ mm}$	none	$Z_0 - Z_{vtx} < 10 \text{ mm}$	$Z_0 - Z_{vtx} < 10 \text{ mm}$	$Z_0 - Z_{vtx} < 10 \text{ mm}$
$ d_{0,sig} $					$ d_{0,sig} < 3.5$
η	$\eta < 2.7$	$2.5 < \eta < 2.7$	$ \eta < 0.1$	$\eta < 2.5$	$\eta < 2.5$
PT	$p_T > 7 \text{ GeV}$	7GeV	20 GeV	$p_T > 25 \text{ GeV}$	$p_T > 25 \text{ GeV}$
track Iso cone0.2		$\sum_{tracks} p_T / p_T < 0.1$		$\sum_{tracks} p_T / p_T < 0.1$	$\sum_{tracks} p_T / p_T < 0.04$
calo Iso cone0.3					topoEtcone30/ET < 0.04
ID - MS cuts					$ (q/p)_{ID} - (q/p)_{MS} /\sigma_C < 5$

- Anti-kt algorithm, R = 0.4
- p_T > 30 GeV
- lηl < 2.5
- b-tagging : MV1c at 70%
 - superior c-jet rejection than MV1 (smaller for light jet)
- Overlap removal
 - jets within $\Delta R < 0.4$ of loose electrons
 - low p_T muons (< 20 GeV) within ΔR < 0.4 of a jet
 - loose electrons within $\Delta R < 0.1$ of a loose muon

Event selection

- At least two jets in the event to form the Higgs mass
 - most selections following Higgs group

$W \rightarrow Iv$ selection

- One electron or one muon with $E_T > 25$ GeV
- 2nd loose electron or muon veto
- Missing $E_T > 30 \text{ GeV}$
- M_T(W) > 40 GeV

$Z \rightarrow II$ selection

- Two electrons, one tight with $E_T > 25$ GeV and one VL with $E_T > 7$ GeV
- One tight muon ($E_T > 25$ GeV) and one VL ($E_T > 7$ GeV)
- Missing $E_T < 60 \text{ GeV}$
- 83 < M(II) < 99 GeV
- Same flavor requirement

$\mathbf{Z} \rightarrow vv$ selection

- Missing E_T > 120 GeV
- Missing $p_T > 30 \text{ GeV}$
- Δφ(MET,MPT) < π/2
- Δφ(MET, j) > 1.5

Backgrounds

Process	Generator	$\sigma \times BR$	Nevents
$W \rightarrow \ell \nu$	Sherpa 1.4.1	10.97 nb	168M
$Z/\gamma * \rightarrow \ell \ell$	SHERPA 1.4.1		42M
$m_{\ell\ell} > 40 \mathrm{GeV}$		1.24 nb	
$Z/\gamma * \rightarrow \nu \nu$	SHERPA 1.4.1		77M
$m_{yy} > 5 \text{ GeV}$		6.71 nb	
WW	POWHEG+PYTHIA	55.43 pb	10M
WZ	POWHEG+PYTHIA		20M
$66 < m_{\ell\ell} < 116 \mathrm{GeV}$		22.69 pb	
ZZ	POWHEG+PYTHIA		7.5M
$66 < m_{\ell\ell} < 116 \mathrm{GeV}$		7.697 pb	
Top-quark			
tī	Powheg	238.06 pb	75M
t-channel	Acer	87.76 pb	9M
s-channel	Powheg	5.61 pb	6M
Wt-channel	Powheg	22.37 pb	20M

- V+jets : shape from MC, rate from data
- ttbar : shape + rate from MC
- diboson : shape + rate from MC
- QCD multijet is data driven

Signal region

- $105 < M_{bb} < 145 \text{ GeV}$
- kinematic cuts on *Iljj* or *Ivjj* candidate
- p_T(j) > 0.1 x M_{IIjj}
- p_T(V) > -77 + 0.48 x M_{Vjj}
- $\Delta \Phi(II) > 9.7 \times 10^7 / M_{IIJJ}^{3.28} + 1$ (2-lepton only)
- single BG shape as M_{IIjj} is varied
- optimized by Higgs group for this analysis

MC Only

Control regions

V+jets CR

- selection of W/Z candidate + 2 jets with $p_T > 30 \text{ GeV}$
- 0, 1 and 2 b-tag regions
 - SR cuts in M_{jj} sideband (1 and 2 tag)

ttbar CR

- 1-lepton : at least 4 jets in the event
- 2-lepton : eµ events

QCD CR

- missing $E_T < 30 \text{ GeV}$
- no Δφ(jet, ME_T) cut

Control regions (2) Preliminary results

0 tag

Blinded!

1 tag

Systematics

Objects

- 14 independant components for JES
- JER
- Energy scale + smearing for leptons
- p_T reconstruction + b-jet corrections
- b-tagging efficiencies :
 - Light jet b-tagging : 10 NP
 - c-jet b-tagging : 15 NP
 - b-jet b-tagging : 10 NP

Shape

- Diboson \rightarrow Herwig vs Pythia
- QCD \rightarrow invert lepton isolation (one lepton analysis)
- Signal \rightarrow renormalization factor, eigenvectors with CTEQ66

Significance

Very Preliminary results

expect to have a sensitivity for masses up to ~1.2 TeV

Samples

Dataset Number	$M_{\rm A}$ [GeV]	S parameter	ĝ	Higgs mass [GeV]	$\sigma \text{ x BR [fb]}$	$\sigma \text{ x BR [fb]}$
182177	300	0.3	2	126	50.48	74.03
182178	400	0.3	2	126	6.467	8.612
182179	500	0.3	2	126	0.7784	0.9767
182180	600	0.3	2	126	0.3002	0.3573
182181	700	0.3	2	126	0.5161	0.6060
182182	800	0.3	2	126	0.7266	0.8312
182183	900	0.3	2	126	0.8146	0.9175
182184	1000	0.3	2	126	0.7636	0.8523
182185	1100	0.3	2	126	0.6540	0.7207
182186	1200	0.3	2	126	0.5382	0.5860
182187	1300	0.3	2	126	0.4527	0.4805
182188	1400	0.3	2	126	0.3922	0.4209
182189	1500	0.3	2	126	0.3358	0.3572

- Produced with MadGraph4
- Samples generated for only one value of gtilde
 - cross sections are affected, not kinematics
- Limits in the M_A vs gtilde plane
 - parton level for gtilde > 2

Conclusion

- Latest version of the paper to be circulated to the Editorial Board by the end of the week
 - hopefully a meeting next week
- We should get the green light for unblinding