²⁰Ne and ²²Ne fragmentation on ¹²C at 11.7 MeV per nucleon at TRIUMF

Patrick St-Onge Université Laval

- Motivation and theory
- Experimental details and preliminary results
- Hybrid simulation code AMD+GEMINI
- Conclusion

Motivation and theory

Equation of state (EOS)

• E (ρ, δ) =E $(\rho, \delta=0)$ + Esym $(\rho) \cdot \delta^2$ +... $\delta = (\rho_n - \rho_p)/\rho$ ρ_n = neutron density ρ_p = proton density

10⁰

10⁻¹

10⁻²

N

A.Ono

- Isoscaling values are lost after deexcitation
- Reconstruction of primary fragments using fragments detected in coincidence in a multidetector
 - All fragments need to be isotopically identified
 - Free neutrons are not detected
- Deexcitation models can help to estimate the number of missing neutrons and charged particules

- Excitation energy of primary fragments is around 3-5 MeV per nucleon
- Parameters used in deexcitation models come from extrapolation from low energy experiments
- Dependence with isospin

Experimental details and preliminary results

TRIUMF ISAC-II

July 2011 experiment
²⁵Na+¹²C at 9.23 AMeV

²⁵Mg+¹²C at 9.23 AMeV

July 2013 experiment
²⁰Ne+¹²C at 11.7 AMeV
²²Ne+¹²C at 11.7 AMeV

HERACLES

CsI(TI) ×16 (34-46°) CsI(TI) ×16 (24-34°)			Phoswich x16 (16-24°) Phoswich x16 (10.5-16°)			BaF2 ×6 (4.8-6°)			
	Target			Telescopes Si-CsI(TI) x8 (6-10°)			1.45m for time of flight		
Ring No.	ΔE detector	E detector	$ heta_{min} \ (^\circ)$	$ heta_{max} \ (^{\circ})$	Ν	$\Delta \phi$ (°)	ΔE thickness (μm)		
0	BC408	BaF_2	4.8	6	6	15	100		
1	Si	CsI(Tl)	6	10	8	18	50		
2	BC408	BC444	10.5	16	16	22.5	100		
3	BC408	BC444	16	24	16	22.5	100		
4	-	CsI(Tl)	24	34	16	22.5	-		
5	-	CsI(Tl)	34	46	16	22.5	-		

In summary:

- Identification of the charge between 4.8° and 24°
- Light charged particles are partially identified up to Z=2 using TOF between 4.8° and 6°
- Light charged particles are identified up to Z=4 in silicon detectors between 6° and 10°
- Light charged particles are identified up to Z=2 between 24° and 46°

Preliminary results

Preliminary results

Hybrid simulation code

- Antisymmetrized Molecular Dynamics
 - Dynamical calculations up to t= 300 fm/c

- Fragment identification using a coalescence algorithm in phase-space (momentum, spin, excitation energy)
- Statistical decay of fragments using GEMINI

Primary fragments

After deexcitation

AMD+GEMINI ²⁰Ne+¹²C at 11.7 AMeV

Hydrogen isotopes detected between 24° and 46° in coincidence with a charge Zmax detected between 4.8° and 24°.

•••••• a=A/11

Conclusion

- HERACLES experiment at TRIUMF is completed
- Still a lot of data analysis to do
 - Identification and calibration for all detectors
 - Comparaison with AMD-GEMINI

³⁴Ar+⁵⁸Ni at 13.5 AMeV

- Dynamic of heavy-ion collisions at intermediate energies
 - QP=Quasi-Projectile QT=Quasi-Target MR=Mid-Rapidity

- AMD details
 - Nucleons are represented by wave packet with a fixed width
 - Antisymmetrization of wave functions
 - A stochastic BUU-type NN collision algorithm is used
 - Quantum Branching

baf2_time:baf2_slow {baf2_time>500 && baf2_time<3500&&nbaf2==1 && baf2_fast<2.54*baf2_slow-370 && baf2_fast<900}