

Bubble Chambers for Dark Matter

Alan Robinson PICO Collaboration

CAP Congress Jun 18, 2014

M. Ardid, M. Bou-Cabo, I. Felis

NORTHWESTERN UNIVERSITY

D. Baxter, C.E. Dahl, M. Jin, J. Zhang

P. Bhattacharjee. M. Das, S. Seth

R. Filgas, S. Pospisil, I. Stekl

F. Debris, M. Fines-Neuschild, C.M. Jackson, M. Lafrenière, M. Laurin, L. Lessard, de Montréal J.-P. Martin, M.-C. Piro, A. Plante, O. Scallon, N. Starinski, V. Zacek

Kavli Institute for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

J.I. Collar, R. Neilson, A.E. Robinson

INDIANA UNIVERSITY

SOUTH BEND

E. Behnke, H. Borsodi, O. Harris,

I. Levine, E. Mann, J. Wells

‡Fermilab

S.J. Brice, D. Broemmelsiek, P.S. Cooper, M. Crisler, W.H. Lippincott, M.K. Ruschman, A. Sonnenschein

D. Maurya, S. Priya

C. Amole, M. Besnier, G. Caria, G. Giroux, A. Kamaha, A. Noble

D.M. Asner, J. Hall

S. Gagnebin, C. Krauss, D. Marlisov, P. Mitra

K. Clark

LaurentianUniversity ŧ **Université**Laurentienne

N. Dhungana, J. Farine, R. Podviyanuk, U. Wichoski

PICO PICASSO & COUPP at SNOLAB

Jun 18, 2014

PICO Why Bubble Chambers?

They're Scalable

2007 1-L bubble chamber

2010 COUPP-4kg at SNOLAB COUPP-60 at FNAL

 $\sim \cdot$ 2016 PICO-250

COUPP-4kg at FNAL Acoustic Discrimination

2013 COUPP-60 at SNOLAB PICO-2L

Slide 4/17 CAP 2014 Jun 18, 2014

PICO Why Bubble Chambers?

Impressive Background Rejection

Multiple Neutron Scattering

Slide 5/17 CAP 2014 Jun 18, 2014

PICO Why Bubble Chambers?

Spin-dependent & Low mass Ability to change target fluid

PICO How it works

Radiation induced boiling of superheated fluid.

230 (a) (b) (C) (d) 190 $P \stackrel{K_{c}}{\checkmark}$ Pressure (psia) Mean expansion time, 39.0°C 33.5 **Boiling Point** (33.5° C, 90 psia) Max expansion time 70 $P_g - P_l = \frac{2\sigma}{R_a}$ 30 3.5 30 0 500 530 Elapsed Time (seconds, linear in each region) Latent Heat Surface Formation $Q = \frac{4\pi}{3} r_{c}^{3} \rho_{b} (h_{b} - h_{l}) + 4\pi r_{c}^{2} \left(\sigma - T \frac{d\sigma}{dT}\right)$ Slide 7/17 CAP 2014

Bubble Chamber operation cycle

Jun 18, 2014

PICO How it works

🕻 COUPP Event Display

PICO How it works

Alphas are ~4 times louder than nuclear recoil bubbles.

>99.4% discrimination against alpha events demonstrated.

PICO COUPP-4kg at SNOLAB

Backgrounds

(α,n) neutrons from components
 Time-clustered events.

- First run deep underground.
- Demonstrated 99.4% alpha discrimination

Slide 10/17 CAP 2014 Jun 18, 2014

PICO COUPP-60

- Operational success:
 - ► 10x more massive
 - ightarrow (35 kg of CF₃I)
 - > 80% live fraction
 - No multiple bubble events from neutrons
 - Acoustic discrimination confirmed in large chamber
 - > 3000 kg-days DM search data collected.

Slide 11/17 CAP 2014 Jun 18, 2014

PICO COUPP-60

• Time-clustered background:

- Correlated with temperature ramp
- Spacially clustered around outside of active volume.
- Anomalous acoustic power

250

200

150

100

50

PICO COUPP-60 upgrade

- Suspect background from dust.
- Next steps:
 - Assay target fluid for particulates.
 - Installation of in-situ fluid filtration system.
 - Elimination of sources of particulate

Slide 13/17 CAP 2014 Jun 18, 2014

PICO PICO-2L

- C_3F_8 filled:
 - Lower threshold
 - Spin-dependent sensitivity
 Chemically inert

- >300 kg-days exposure.
- Run completed in May.
- Acoustic calorimetry.

Slide 14/17 CAP 2014 Jun 18, 2014

PICO PICO-250L

- Designed for 250L of C_3F_8 or CF_3I target fluid
- Awaiting funding decision (DOE G2)
- Engineering of components underway

Slide 15/17 CAP 2014 Jun 18, 2014

PICO Sensitivity Projections

Slide 16/17 CAP 2014 Jun 18, 2014

PICO Other PICO Talks

- (R1-9) Dark Matter II 09h45 tomorrow
 - Chanpreet Amole PICO-2L analysis
 - Ruslan Podvianuk Acoustic signal conditioning
 - Pitam Mitra Geyser detector R&D
- Poster Session 19h00 today
 - Matthieu Lafrenière Geant4 simulations
 - Arthur Plante Acoustic Discrimination
- (F1-5) Dark Matter III 08h45 Friday
 - Mathieu Laurin Characterization of detectors using mono-energetic neutrons

Slide 17/17 CAP 2014 Jun 18, 2014 **Extra slides**

PICO Efficiency calibrations

- Measure elastic scatters of a 12 GeV π^- beam
 - Event-by-event recoil energy measurement.
 - Preferentially scatters on iodine.

PICO Efficiency calibrations

Slide 20/17 CAP 2014 Jun 18, 2014

PICO CF₃I C/F Efficiency

Normalized background subtracted count rate for Y/Be neutrons on CF_3I bubble chambers

Slide 21/17 CAP 2014 Jun 18, 2014

Expectation and Fit from Y/Be neutrons on $C_{3}F_{8}$

Slide 22/17 CAP 2014 Jun 18, 2014