CAP Congress - June 2014 - Sudbury

Recent Developments in Astroparticle Physics

Adam Ritz
University of Victoria

Astroparticle Physics

- Fundamental physics in (and from) the cosmic laboratory
 - New physics
 - e.g. dark matter, ...

A working definition of "astroparticle physics" for this talk

- New regimes
 - e.g. (very) high energy accelerators,

Large and active experimental and theoretical field. This overview will be a bit biased, focussing mainly on searches for dark matter

2013-14 News items

Precision CMB - focus on sensitivity to new degrees of freedom (Planck, BICEP2)

CMB sensitivity to light degrees of freedom

Important test of new light (relativistic) degrees of freedom, that affect the energy density during radiation domination

$$ho_{
u} \propto N_{
m eff} T^4$$

[Planck 2013]

CMB sensitivity to DM annihilation

Sensitivity to residual DM annihilation around recombination

- First observation of lensed B-modes
 - EB correlation from SPTPol
 - BB from PolarBear

- First observation of lensed B-modes
- First claimed observation of primordial B-modes from BICEP2

Simulation: B from lensed–ΛCDM+noise

- First observation of lensed B-modes
- First claimed observation of primordial B-modes from BICEP2

- First observation of lensed B-modes
- First claimed observation of primordial B-modes from BICEP2

assumes foregrounds, e.g. from dust, are negligible (to be

checked!)

- First observation of lensed B-modes
- First claimed observation of primordial B-modes from BICEP2
 - assumes foregrounds, e.g. from dust, are negligible (to be checked!)
 - If primordial, the signal appears consistent with gravitational waves generated during inflation with a simple V ~ m²φ² inflaton potential
 - Inflation at the GUT energy scale of 10¹⁶ GeV!

$$r = 0.14 \left(\frac{H}{10^{14} \,\mathrm{GeV}}\right)^2$$

High inflationary scale vs axion DM

Any "measurable" value of r would point against high scale axion DM due to the constraints on isocurvature perturbations

Precision BBN

- Recent determinations of the BBN Deuterium abundance from BBN, using absorption in metalpoor high-z Lyman-α systems
 - percent-level consistency of baryon abundance with CMB

DM in the late universe

results from the Fermi satellite

highest rate, but many other sources including transients

low background, but astrophysical uncertainties

results from the Fermi satellite

– annihilation constraints now close to the s-wave benchmark from thermal freeze-out $\Omega_{\rm DM}h^2\sim 0.1\left(\frac{3\times 10^{-26}{\rm cm}^3{\rm s}^{-1}}{\langle\sigma v\rangle}\right)$

From regions around the galactic center

Combined limits from 15 dwarf spheroidal satellites

 10^{4}

Identifying astrophysical signatures of DM annihilation...

The signatures are photons, cosmic rays, etc, and there are usually many astrophysical backgrounds...

- Hints from the galactic center...?
 - DM annihilation or astrophysics? (e.g. MSPs, transients,...)

- Also, a claim of new 3.57 keV x-ray line in clusters... [Bulbul et al, 2014]
- (earlier hints of a 130 GeV line are dissipating) 22

- AMS-02 verified the anomalous rise in the cosmic ray positron fraction = e⁺/(e⁺+e⁻)
 - dark matter annihilation or a local source (e.g. pulsars)?

PeV (astrophysical) neutrinos

First observation of astrophysical neutrinos

[IceCube '14]

PeV (astrophysical) neutrinos

First observation of astrophysical neutrinos

- Deposited EM-Equivalent Energy in Detector (TeV)
- 37 events (background ~ 10), flavor universal and isotropic in direction
- expect to be linked to high-energy cosmic rays...

Direct DM detection

Impressive direct detection sensitivity to thermal relic (WIMP) dark matter in the halo with O(GeV - TeV) mass, and spin-independent scattering with nuclei.

Direct DM detection - low mass

Candidate events from DAMA, CoGeNT, CRESST, CDMS(Si) not confirmed by LUX, SuperCDMS, CDMSLite

Direct DM detection - low mass

Fixed target DM searches - Neutrino Beams

Sensitivity within search currrently underway at MiniBooNE (run as a beam dump to reduce neutrino background)

[deNiverville et al '11, Dharmapalan et al '12; Batell, deNiverville et al '14]

Fixed target DM searches - Neutrino Beams

Sensitivity within search currrently underway at MiniBooNE (run as a beam dump to reduce neutrino background)

[deNiverville et al '11, Dharmapalan et al '12; Batell, deNiverville et al '14]

Proposal to use T2K/SuperK (exploiting timing cuts) to explore higher mass range

[CAP talk by C. Nantais] 30

Other probes of light DM

In place of conclusions...

 As we're in Sudbury, can't over-emphasize the global importance of SNOLAB for observational astroparticle physics, with neutrino and direct detection dark matter searches.

Extra slides

Fixed target DM searches - Neutrino Beams

Can use the neutrino (near) detector as a dark matter detector, looking for recoil, but now from a relativistic beam. E.g.

- LSND 800 MeV beam, 10²³ POT, detector at 30m
- MiniBooNE 9 GeV beam, 650 ton detector at 500m
- T2K 30 GeV beam, off-axis detectors, near (280m), far (Super-K)
- (CHARM, MINOS, NOVA, LBNE,...)

Fixed target DM searches - Neutrino Beams

