

A search at Super-Kamiokande for low mass dark matter candidates in the T2K neutrino beam

Corina Nantais University of British Columbia

CAP Congress, Laurentian University, 16-20 June 2014

T2K is a long baseline neutrino oscillation experiment

T2K ... can be used to produce and then detect WIMPs

Current underground direct detection experiments have poor sensitivity to low mass WIMPs

Current underground direct detection experiments have poor sensitivity to low mass WIMPs

A mediator that decays to low mass WIMPs

Kinetic mixing between Standard Model γ and vector mediator V is one possibility

References

P. deNiverville, D. McKeen, and A. Ritz, "Signatures of sub-GeV dark matter beams at neutrino experiments," *Phys. Rev. D* **86**, 035022 (2012). A.A. Aguilar-Arevalo *et al.*, "Low mass WIMP searches with a neutrino experiment: A proposal for further MiniBooNE running," arXiv:1211.2258. P. deNiverville and A. Ritz, private communication.

Production in T2K target, and detection in far detector

Theorist estimate of T2K Super-K sensitivity is complementary

A. Ritz and P. deNiverville, private communication.

Super-K water Čerenkov detector is well understood

Super-K water Čerenkov detector is well understood

Nuclear de-excitation gammas after the neutrino-oxygen neutral current quasi-elastic (NCQE) interaction

600 MeV, single nucleon emission is dominant mechanism

excited nucleus decays by emitting gammas

contribution of $p_{3/2}$ is overwhelming: 6.32 MeV from $(p_{3/2})_{p}$ 6.18 MeV from $(p_{3/2})_n$

neutrons protons

Selection cuts

- 4 30 MeV reconstructed energy
- > 34° Čerenkov angle to remove muons
- ±100 ns of beam timing

• ...

Study gamma production from neutrons

Study gamma production from neutrons

Study gamma production from neutrons

Study gamma production from neutrons

16

neutron

 \mathcal{V}

Time of flight to separate WIMP from neutrino

time relative to trigger (μ s) 17

Conclusion: A competitive and complementary search

Search for low mass dark matter candidate produced in T2K neutrino beam

- understand detection of de-excitation gammas in Super-K after neutrino-oxygen NCQE
- improvements to current analysis, then apply to WIMP search
- WIMP/neutrino discrimination using time of flight

