

Water Assay Using Hydrous Titanium Oxide Technique for the SNO+ Experiment

Dimpal Chauhan Queen's University, Laurentian University, LIP Lisbon

CAP Congress, June 17, 2014 Sudbury, ON

INTRODUCTION

SNOLAB Surface Building

*SNO+ is a multi-purpose neutrino detector.

CAP 2014, Dimpal Chauhan, Queen's University

Oueen's

1.Replace 1000 tonnes of D₂O by 780 tonnes of Linear Alkyl Benzene (liquid organic scintillator).

2.New hold-down rope system to counter AV buoyancy has been installed.

Oueens

SNQ

Initial Water Fill Phase: 2014

- * Fill AV with water from Top.
- * Currently filling cavity with water: 18 feet.

Motivation : important to understand the radioactivity levels in water.

Water Before It Goes In The SNO+ Cavity/AV

Why Do We Need Water Assays ?

Main backgrounds: Due to naturally occurring radioactivity (U and Th decay chains) .

Water as a radioactive shield.

Extremely low radioactivity levels needs to be achieved

Radioactivity levels present in the water needs to be continuously monitored and water purified on a regular basis.

HTiO technique was developed for SNO to measure activity of ²³²Th and ²³⁸U chains by extracting ²²⁸Th, ²²⁴Ra, ²²⁶Ra, and ²¹²Pb from the water.

The target levels for water purity are:

Outside the AV: 5.2×10^{-14} gTh/g and 2.06×10^{-13} gU/g Inside the AV: 3.5×10^{-15} gTh/g and 3.5×10^{-14} gU/g

SN

Hydrous Titanium Oxide (HTiO) Technique

* HTiO is an inorganic ion-exchanger that has the ability to remove heavy ions like Ra, Th from water.

* It's hydroxide structure allows anionic exchange at low pH and cationic exchange at high pH.

For SNO+ water, $pH = \sim 7$.

$$M-OH + OH^- + N^+ \longrightarrow M-O^-N^+ + H_2O$$

M-OH = hydrous oxide N+ = heavy ion

* HTiO Technique is a six stage process.

* Both Ra and Rn are present in the water. But Ra is picked up by HTiO during an assay and Rn (gas) is not.

(See Janet Rumleskie's poster: LAB Radon Assay Board for the SNO+ Experiment, June 18, 19:04)

Stages of HTiO Technique

1M NaOH added to Ti(SO4)2 until pH 12
Sol. centrifuged, rinsed with UPW and stored in HTiO bottles

2. HTiO Deposition

Deposited onto a pair of memtrex filter (2.5g/m

The columns are then sealed and transported UG.

Stages of HTiO Technique

	Columns mounted on water system.
3. Ra Extraction	• Water extracted from different regions.
(from water onto HTiO	• Start assay (for pre-determined period of
loaded filters)	time)
	• Ra trapped on cols., stop assay

Water Assay when it enters SNOLAB

Water enters SNOLAB

The columns sealed and taken back to surface clean lab

Stages of HTiO Technique

4. Elution (Removing Ra from HTiO loaded filters)	 Columns mounted on elution rig. Elute the columns using HCl. Collect eluate (~ 15L) 	
	• IX extraction	Secondary Concentration Step:
5. Secondary Concentration (Separating Ra from acid using IX method)	 IX extraction IX elution EDTA decomposition HTiO co-precipitation Sample preparation 	DOWEX IX resin Eluate
6. Counting	Count sample (~ 2 weeks) to get Ra activity	

CAP 2014, Dimpal Chauhan, Queen's University

SNQ

Blank/ Background Assays

- * In addition to sample runs, blank runs are also performed.
- * Blank assays are done to determine contribution of equipments, chemicals to the radioactive signals for an assay.
- * Involves same steps for HTiO technique (except for extraction).

True Activity = Sample activity - Blank activity

- * 3-4 x 10^-16 g/g U and Th sensitivities achieved in SNO with HTiO technique (275 tonnes D2O assay).
- * We want extremely low level of radioactivity in water
- \Rightarrow It is very important to know the efficiency of the HTiO technique

Efficiency At Each Stage of HTiO Technique

- HTiO is multi stage process, so need to understand the efficiency at each step.
- We do set of independent measurements to see how effective is our technique
- The ability of the HTiO technique to remove Ra from water can be measured at each step of an assay using spike tests.
- Measurements have been done on SNO and some have been repeated for SNO+ (secondary concentration).

*B.Aharmim et al. / Nuclear Instruments and Methods in Physics Research A 604 (2009) 531-535

Steps	Efficiency	
	226Ra(%)	224Ra(%)
HTiO Preparation:		
HTiO Deposition:		
Extraction:	*95 ± 5	*95 ± 5
Elution:	*90 ± 10	*90 ± 10
Secondary Concentration:	*58 ± 6	37 ± 10
Total Chemical * (Eext . Eelu . Econe)	*50 ± 8	33 ± 8
Counting:	*60 ± 10	*45 ± 5
Total* (Eext . Eelu . Econe . Ecount)	*30 ± 7	15 ± 4

Alternative Approach to Secondary Concentration Step

1. For LAB, new assay technique has been developed by SNO+ *

- 2. It looks promising as a simple and better way to do this with water.
- 3. Involves Quadrasil AP beads (as for LAB) instead of DOWEX resin in the secondary concentration step.
- 4. Having two parallel technique will tell us which method is better and the results can be compared as well.
- 5. Many spike tests being performed to explore this option. R&D will be ongoing for several months and is being done at LU.
- R. Ford, M. Chen, O. Chkvorets, D. Hallman, E. Vazquez-Jauregui, "SNO+ Scintillator Purification and Assay". (<u>http://dx.doi.org/10.1063/1.3579580</u>)

CAP 2014, Dimpal Chauhan, Queen's University

Secondary Concentration step using Quadrasil Beads

Conclusions

- * Sensitivity of water assay comparable to those from SNO experiment have been achieved.
- Improved/alternative approach in secondary concentration technique in progress.
- * Keeping track of radioactivity levels in water is very crucial for our experiment and hence water assays.

SNO+ Collaboration

Alberta Laurentian SNOLAB TRIUMF

BNL, AASU U Penn, UNC U Washington UC Berkeley/LBNL Chicago, UC Davis Oxford

Oxford Sussex QMUL Liverpool Lancaster

LIP Lisboa LIP Coimbra

TU Dresden

SNQ

Acknowledgements

This work was partially funded by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through project grant PTDC/FIS/115281/2009

Backup Slides

SNQ

CAP 2014, Dimpal Chauhan, Queen's University

17

Why LAB?

High light yield (~10000 optical photons/MeV).
 Long attenuation length.
 Chemical compatibility with acrylic.
 High purity available.
 Low scattering
 Good optical transparency.
 Low toxicity.
 Environmentally safe.
 Inexpensive.
 Low solubility in water

Advantages of Te

- 1. 34% natural abundance.
- 2. $2\nu\beta\beta$ rate is low.
- 3. Internal U/Th backgrounds can be actively suppressed by identifying 214Bi-214Po alphas.

1.Search for neutrino less double beta decay:

*This will be achieved by loading 130Te in LAB.

*If we see neutrino less double beta decay, it would mean that neutrinos are their own anti-particles (neutrinos are Majorana particles).

2.Detection of low energy solar neutrinos:

*pep neutrinos:

- The pep reaction produces mono energetic neutrino (1.442 MeV) and has well predicted flux (1.5% uncertainty).
- Detecting the pep neutrinos and measuring their survival probability can improve the precision on neutrino oscillation parameters and sensitivity to alternative models of neutrino mixing.
- pep neutrino measurement requirements:
- i.Depth: C-11 produced by muons interacting with carbon atoms of LAB. C-11 is a background for pep neutrinos. So deeper location is effective in reducing the cosmogenic backgrounds.
- ii.Radiopurity: should be at the level of 10⁽⁻¹⁷⁾ g/g of U and Th. Bi-210 mimics the pep signal events.

*CNO neutrinos:

Oueens

- •CNO neutrinos can be sued to test the Sun's metallicity. i.e. if the elements are homogeneously distributed in the Sun.
- Main source of background for CNO signal is Bi-210.

SNO+ Physics Goals:

3.Detection of geo- and reactor neutrinos:

*Geo-neutrinos:

- •SNO+ located in a thick crust, well studied geology and a lower reactor neutrino background.
- •Emitted by natural radioactivity in the earth (U, Th decays). With this study, we can assay the earth (radiogenic heat production).
- The U/Th composition in the earth's crust and mantle are unknown. With large liquid scintillator neutrino detector, we can directly measure crust and mantle U/Th composition by detecting the emitted anti-neutrinos through IBD.

*Reactor Neutrinos:

• Study of reactor neutrinos would demonstrate oscillation phenomenon and result in sensitivity to neutrino oscillation parameters similar to KamLAND after ~3yrs data taking even though the expected flux is ~5 times smaller. Lower no. of reactors give rise to clear oscillation patter

4. Supernova neutrinos:

- *If a supernova occurs in our galaxy, SNO+ will see 100 of neutrinos.
- *Observing these neutrinos would tell us about neutrino-matter interactions and about the core collapse supernova mechanism

Experimental and Manpower Hours

Step	Time	
HTiO Preparation	8-9 days	
Cleaning of elution rig	2 hrs	
HTiO Deposition (2 columns)	4 hrs	
Ra Extraction	3 days	
Elution	3hrs	
Secondary concentration	7 hrs	
Counting	~ 2weeks	
Total time	26-27 days for one assay (UG) or ~18 days (not including HTiO prep)	

